首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A digital microfluidic system based on electrowetting has been developed to facilitate the investigation of pre-steady-state reaction kinetics using rapid quenching and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The device consists of individually addressable electrodes arranged to allow the combination of liquid droplets at well-defined time intervals and an integrated, electrohydrodynamically driven mixer. The device combines two droplets to initiate a reaction, then, with precise timing, combines a third droplet to quench the reaction, and finally combines a fourth droplet to form a matrix. Improvements to throughput when compared to traditional laboratory-scale methods, and previous MALDI-TOF MS digital microfluidic systems, were made. The device was tested against a model protein tyrosine phosphatase system, and results agreed well with published data. The system therefore allows for the analysis of reaction kinetics that were previously too rapid to analyze using MALDI-TOF MS.  相似文献   

2.
A three-phase flow, water/n-heptane/water, was constructed in a microchannel (100-microm width, 25-microm depth) on a glass microchip (3 cm x 7 cm) and was used as a liquid membrane for separation of metal ions. Surface modification of the microchannel by octadecylsilane groups induced spontaneous phase separation of the three-phase flow in the microfluidic device, which allows control of interfacial contact time and off-chip analysis using conventional analytical apparatus. Prior to the selective transport of a metal ion through the liquid membrane in the microchannel, the forward and backward extraction of yttrium and zinc ions was investigated in a two-phase flow on a microfluidic device using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (commercial name, PC-88A) as an extractant. The extraction conditions (contact time of the two phases, pH, extractant concentration) in the microfluidic device were examined. These investigations demonstrated that the conventional methodology for solvent extraction of metal ions is applicable to solvent extraction in a microchannel. Finally, we employed the three-phase flow in the microchannel as a liquid membrane and observed the selective transport of Y ion through the liquid membrane. In the present study, we succeeded, for the first time, in the selective separation of a targeted metal ion from an aqueous feed solution to a receiving phase within a few seconds by employing a liquid membrane formed in a microfluidic device.  相似文献   

3.
Water or aqueous electrolytes are the dominant components in electrowetting on dielectric (EWOD)-based microfluidic devices. Low thermal stability, evaporation, and a propensity to facilitate corrosion of the metal parts of integrated circuits or electronics are drawbacks of aqueous solutions. The alternative use of ionic liquids (ILs) as electrowetting agents in EWOD-based applications or devices could overcome these limitations. Efficient EWOD devices could be developed using task-specific ILs. In this regard, a fundamental study on the electrowetting properties of ILs is essential. Therefore electrowetting properties of 19 different ionic liquids, including mono-, di-, and tricationic, plus mono- and dianionic ILs were examined. All tested ILs showed electrowetting of various magnitudes on an amorphous flouropolymer layer. The effects of IL structure, functionality, and charge density on the electrowetting properties were studied. The enhanced stability of ILs in electrowetting on dielectric at higher voltages was studied in comparison with water. Deviations from classical electrowetting theory were confirmed. The physical properties of ILs and their electrowetting properties were tabulated. These data can be used as references to engineer task-specific electrowetting agents (ILs) for future electrowetting-based applications.  相似文献   

4.
In this technical note, a liquid-liquid extraction technique was performed using pneumatic liquid recirculation on a centrifugal microfluidic device. Non-contact pneumatic pumping enabled a multi-cycle liquid-liquid extraction process using aqueous iodine in a potassium iodide solution and hexadecane while requiring a minimal amount of space on the device. The extraction process was completely automated on the device following sample introduction and required only 50 s for each extraction cycle. The pumping rate achieved during liquid recirculation was 120 ± 10 μL/min. A recycling process such as the one demonstrated would be difficult to implement in a conventional centrifugal microfluidic system.  相似文献   

5.
A portable, highly sensitive, and continuous ammonia gas monitoring system was developed with a microfluidic chip. The system consists of a main unit, a gas pumping unit, and a computer which serves as an operation console. The size of the system is 45 cm width × 30 cm depth × 30 cm height, and the portable system was realized. A highly efficient and stable extraction method was developed by utilizing an annular gas/liquid laminar flow. In addition, a stable gas/liquid separation method with a PTFE membrane was developed by arranging a fluidic network in three dimensions to achieve almost zero dead volume at the gas/liquid extraction part. The extraction rate was almost 100% with a liquid flow rate of 3.5 μL/min and a gas flow rate of 100 mL/min (contact time of ~15 ms), and the concentration factor was 200 times by calculating the NH(3) concentration (w/w unit) in the gas and liquid phases. Stable phase separation and detection was sustained for more than 3 weeks in an automated operation, which was sufficient for the monitoring application. The lower limit of detection calculated based on a signal-to-noise ratio of 3 was 84 ppt, which showed good detectability for NH(3) analysis. We believe that our system is a very powerful tool for gas analysis due to the advantages of portable size, high sensitivity, and continuous monitoring, and it is particularly useful in the semiconductor field.  相似文献   

6.
This paper demonstrates the ability to use capillary electrophoresis (CE) separation coupled with laser-induced fluorescence for analyzing the contents of single femtoliter-volume aqueous droplets. A single droplet was formed using a T-channel (3 microm wide by 3 microm tall) connected to microinjectors, and then the droplet was fluidically moved to an immiscible boundary that isolates the CE channel (50 microm wide by 50 microm tall) from the droplet generation region. Fusion of the aqueous droplet with the immiscible boundary effectively injects the droplet content into the separation channel. In addition to injecting the contents of droplets, we found aqueous samples can be introduced directly into the separation channel by reversibly penetrating and resealing the immiscible partition. Because droplet generation in channels requires hydrophobic surfaces, we have also investigated the advantages to using all hydrophobic channels versus channel systems with patterned hydrophobic and hydrophilic regions. To fabricate devices with patterned surface chemistry, we have developed a simple strategy based on differential wetting to deposit selectively a hydrophilic polymer (poly(styrenesulfonate)) onto desired regions of the microfluidic chip. Finally, we applied our device to the separation of a simple mixture of fluorescein-labeled amino acids contained within a approximately 10-fL droplet.  相似文献   

7.
Ionic liquid droplet as e-microreactor   总被引:1,自引:0,他引:1  
A powerful approach combining a droplet-based, open digital microfluidic lab-on-a-chip using task-specific ionic liquids as soluble supports to perform solution-phase synthesis is reported as a new tool for chemical applications. The negligible volatility of ionic liquids enables their use as stable droplet reactors on a chip surface under air. The concept was validated with different ionic liquids and with a multicomponent reaction. Indeed, we showed that different ionic liquids can be moved by electrowetting on dielectric (EWOD), and their displacement was compared with aqueous solutions. Furthermore, we showed that mixing ionic liquids droplets, each containing a different reagent, in "open" systems is an efficient way of carrying supported organic synthesis. This was applied to Grieco's tetrahydroquinolines synthesis with different reagents. Analysis of the final product was performed off-line and on-line, and the results were compared with those obtained in a conventional reaction flask. This technology opens the way to easy synthesis of minute amounts of compounds ad libitum without the use of complex, expensive, and bulky robots and allows complete automation of the process for embedded chemistry in a portable device. It offers several advantages, including simplicity of use, flexibility, and scalability, and appears to be complementary to conventional microfluidic lab-on-a-chip devices usually based on continuous-flow in microchannels.  相似文献   

8.
Numerous structures have been functionally optimized for directional liquid transport in nature. Inspired by lush trees’ xylem that enable liquid directional transportation from rhizomes to the tip of trees, a new kind of programmable microfluidic porous matrices using projection micro-stereolithography (PµSL) based 3D printing technique is fabricated. Structural matrices with internal superhydrophilicity and external hydrophobicity are assembled for ultra-fast liquid rising enabled by capillary force. Moreover, the unidirectional microfluidic performance of the bionic porous matrices can be theoretically optimized by adjusting its geometric parameters. Most significantly, the successive programmable flow of liquid in a preferred direction inside the bionic porous matrices with tailored wettability is achieved, validating by a precisely printed liquid displayer and a microfluidic logic chip. The programmable and functional microfluidic matrices promise applications of patterned liquid flow, displayer, logic chip, cell screening, gas–liquid separation, and so on.  相似文献   

9.
A switchable electrode, which relies on an indium‐tin oxide conductive substrate coated with a self‐assembled monolayer terminated with an anthraquinone group (AQ), is reported as an electrowetting system. AQ electrochemical features confer the capability of yielding a significant modulation of surface wettability as high as 26° when its redox state is switched. Hence, an array of planar electrodes for droplets actuation is fabricated and integrated in a microfluidic device to perform mixing and dispensing on sub‐nanoliter scale. Vehiculation of cells across microfluidic compartments is made possible by taking full advantage of surface electrowetting in culture medium.  相似文献   

10.
The microstructure development during a cooling period of alloys being immiscible in the liquid state such as Al-Pb or Al-Bi has gained renewed scientific and technical interest during the last decades.Experiments have been performed to investigate the phase transformation kinetics in the liquid miscibility gap and numerical models have been developed to simulate and analyze the solidification process.The recently developed computational modeling techniques can,to some extent,be applied to describe the decomposition,the spatial phase separation and the microstructure evolution during a cooling period of an immiscible alloy through the miscibility gap.This article overviews the researches in this field.  相似文献   

11.
A polymeric microfluidic device for solid-phase extraction (SPE)-based isolation of nucleic acids is demonstrated. The plastic chip can function as a disposable sample preparation system for different biological and diagnostic applications. The chip was fabricated in a cyclic polyolefin by hot-embossing with a master mold. The solid phase consisted of a porous monolithic polymer column impregnated with silica particles. The extraction was achieved due to the binding of nucleic acids to the silica particles in the monolith. The solid phase was formed within the channels of the device by in situ photoinitiated polymerization of a mixture of methacrylate and dimethacrylate monomers, UV-sensitive free-radical initiator, and porogenic solvents. The channel surfaces were pretreated via photografting to covalently attach the monolith to the channel walls. The solid phase prepared by this method allowed for successful extraction and elution of nucleic acids in the polymeric microchip.  相似文献   

12.
Selective ion extraction: a separation method for microfluidic devices   总被引:1,自引:0,他引:1  
A separation concept, selective ion extraction (SIE), is proposed on the basis of the combination of hydrodynamic and electrokinetic flow controls in microfluidic devices. Using a control system with multiple pressure and voltage sources, the hydrodynamic flow and electric field in any section of the microfluidic network can be set to desired values. Mixtures of compounds sent into a T-junction on a chip can be completely separated into different channels on the basis of their electrophoretic mobilities. A simple velocity balance model proved useful for predicting the voltage and pressure settings needed for separation. SIE provides a highly efficient separation with minimal additional dispersion. It is an ideal technique for high-throughput screening systems and demonstrates the power of lab-on-a-chip systems.  相似文献   

13.
基于介质上电润湿的透射式显示器件   总被引:2,自引:0,他引:2  
提出了一种基于介质上电润湿效应的新型透射式显示单元结构,它由夹在带有透明电极的两块玻璃板间的有色油滴和水组成,其中一个电极表面涂覆有疏水性介质层.通过改变两个电极间的外加电势,能够调节油滴对介质层的覆盖面积,从而控制显示单元的“开”、“关”状态.制作了具有该种单元结构的4×3显示阵列样机,并给出了初步的测试结果.  相似文献   

14.
Microfluidic high-resolution free-flow isoelectric focusing   总被引:1,自引:0,他引:1  
A microfluidic free-flow isoelectric focusing glass chip for separation of proteins is described. Free-flow isoelectric focusing is demonstrated with a set of fluorescent standards covering a wide range of isoelectric points from pH 3 to 10 as well as the protein HSA. With respect to an earlier developed device, an improved microfluidic FFE chip was developed. The improvements included the usage of multiple sheath flows and the introduction of preseparated ampholytes. Preseparated ampholytes are commonly used in large-scale conventional free-flow isoelectric focusing instruments but have not been used in micromachined devices yet. Furthermore, the channel depth was further decreased. These adaptations led to a higher separation resolution and peak capacity, which were not achieved with previously published free-flow isoelectric focusing chips. An almost linear pH gradient ranging from pH 2.5 to 11.5 between 1.2 and 2 mm wide was generated. Seven isoelectric focusing markers were successfully and clearly separated within a residence time of 2.5 s and an electrical field of 20 V mm-1. Experiments with pI markers proved that the device is fully capable of separating analytes with a minimum difference in isoelectric point of Delta(pI) = 0.4. Furthermore, the results indicate that even a better resolution can be achieved. The theoretical minimum difference in isoelectric point is Delta(pI) = 0.23 resulting in a peak capacity of 29 peaks within 1.8 mm. This is an 8-fold increase in peak capacity to previously published results. The focusing of pI markers led to an increase in concentration by factor 20 and higher. Further improvement in terms of resolution seems possible, for which we envisage that the influence of electroosmotic flow has to be further reduced. The performance of the microfluidic free-flow isoelectric focusing device will enable new applications, as this device might be used in clinical analysis where often low sample volumes are available and fast separation times are essential.  相似文献   

15.
Sgro AE  Allen PB  Chiu DT 《Analytical chemistry》2007,79(13):4845-4851
This article describes a method for manipulating the temperature inside aqueous droplets, utilizing a thermoelectric cooler to control the temperature of select portions of a microfluidic chip. To illustrate the adaptability of this approach, we have generated an "ice valve" to stop fluid flow in a microchannel. By taking advantage of the vastly different freezing points for aqueous solutions and immiscible oils, we froze a stream of aqueous droplets that were formed on-chip. By integrating this technique with cell encapsulation into aqueous droplets, we were also able to freeze single cells encased in flowing droplets. Using a live-dead stain, we confirmed the viability of cells was not adversely affected by the process of freezing in aqueous droplets provided cryoprotectants were utilized. When combined with current droplet methodologies, this technology has the potential to both selectively heat and cool portions of a chip for a variety of droplet-related applications, such as freezing, temperature cycling, sample archiving, and controlling reaction kinetics.  相似文献   

16.
Localized heating of droplets on an electrowetting-on-dielectric (EWOD) chip has been implemented and shown to accelerate trypsin digestion reaction rates, sample drying, and matrix crystallization for matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Achieving this involved extending the functionality of previous EWOD droplet-based techniques by developing a multifunctional electrode with closed-loop temperature control, while minimizing overall system complexity and addressing challenges associated with rapid evaporation. For the EWOD chip design, we discuss the performance of multifunctional surface electrodes for actuation, localized Joule heating, and thermistic temperature sensing. Furthermore, a hydrophilic pattern is formed in the multifunctional electrode to control the location of an evaporating droplet on the electrode. To demonstrate the capabilities and limitations of this technique, we performed three experiments and measured the results using MALDI-MS: (i) insulin disulfide reductions in dithiothreitol (DTT) over a range of heater temperatures (22-70 °C) to show how reaction rates can be affected by thermal control, (ii) insulin disulfide reductions at 130 °C in dimethyl sulfoxide (DMSO) to demonstrate a reaction in a high boiling point solvent, and (iii) tryptic digestions of cytochrome c at 22 and 40 °C to show that heated droplets can yield reasonably higher peptide sequence coverage than unheated droplets. Although they do not decouple the effects of changing temperatures and concentrations, these experiments verified that thermal cycling by EWOD electrodes accelerates reaction rates in liquid droplets in air.  相似文献   

17.
Cai LF  Zhu Y  Du GS  Fang Q 《Analytical chemistry》2012,84(1):446-452
We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold.  相似文献   

18.
We introduce the marriage of two technologies: digital microfluidics (DMF), a technique in which droplets are manipulated by application of electrostatic forces on an array of electrodes coated by an insulator, and porous polymer monoliths (PPMs), a class of materials that is popular for use for solid-phase extraction and chromatography. In this work, circular PPM discs were formed in situ by dispensing and manipulating droplets of monomer solutions to designated spots on a DMF device followed by UV-initiated polymerization. We used PPM discs formed in this manner to develop a digital microfluidic solid-phase extraction (DMF-SPE) method, in which PPM discs are activated and equilibrated, samples are loaded, PPM discs are washed, and the samples are eluted, all using microliter droplets of samples and reagents. The new method has extraction efficiency (93%) comparable to that of pipet-based ZipTips and is compatible with preparative sample extraction and recovery for on-chip desalting, removal of surfactants, and preconcentration. We anticipate that DMF-SPE may be useful for a wide range of applications requiring preparative sample cleanup and concentration.  相似文献   

19.
Inkjet-printed microfluidic multianalyte chemical sensing paper   总被引:2,自引:0,他引:2  
This paper presents an inkjet printing method for the fabrication of entire microfluidic multianalyte chemical sensing devices made from paper suitable for quantitative analysis, requiring only a single printing apparatus. An inkjet printing device is used for the fabrication of three-dimensional hydrophilic microfluidic patterns (550-mum-wide flow channels) and sensing areas (1.5 mm x 1.5 mm squares) on filter paper, by inkjet etching, and thereby locally dissolving a hydrophobic poly(styrene) layer obtained by soaking of the filter paper in a 1 wt % solution of poly(styrene) in toluene. In a second step, the same inkjet printing device is used to print "chemical sensing inks", comprising the necessary reagents for colorimetric analytical assays, into well-defined areas of the patterned microfluidic paper devices. The arrangement of the patterns, printed inks, and sensing areas was optimized to obtain homogeneous color responses. The results are "all-inkjet-printed" chemical sensing devices for the simultaneous determination of pH, total protein, and glucose in clinically relevant concentration ranges for urine analysis (0.46-46 muM for human serum albumin, 2.8-28.0 mM for glucose, and pH 5-9). Quantitative data are obtained by digital color analysis in the L*a*b* color space by means of a color scanner and a simple computer program.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号