首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Heavy metals in trace amounts are normal constituents of marine organisms. At sufficiently high concentrations, heavy metals are toxic to living organisms and so it is important to know by how much their concentration may be increased before effects on marine or estuarine populations can be detected or commercial species become unsuitable as food. A method of removing metals is by storage in a particular tissue. Several different sites for storing metals were investigated and concentrations of Cd, Cu, Pb and Zn were examined in muscle, liver and gonads of the smelt (Osmerus mordax) from the North shore of the St Lawrence estuary. Copper and zinc are constituents of several enzymes and are absolutely essential for normal growth and development, while cadmium and lead are not known to have necessary physiological function. A modified wet digestion procedure was used to prepare biological samples for the determination of trace elements by flameless atomic absorption spectrophotometry procedure, using calibration standards made up in a matrix of similar acidity (Table 1). NBS reference material bovine liver was analyzed along with the samples and the results were within the specified tolerance (Table 2). Analyses were reported on a dry weight basis (Table 3) and the correlations with total body weight were determined by regression analysis. Copper (range 0.3–3.3 μg g−1) and zinc (range 19–38 μg g−1) in muscle fillets were found to be negatively correlated with total body weight (Fig. 1). Apparent decreasing concentrations in these two metal levels in muscle sample with increasing body weight were possibly due to factor such as dilution with growth. Growth may dilute metal concentrations in an organism if tissue is added faster than metal. Livers and gonads contained greater levels of the four metals than somatic muscle. Liver metal concentrations of Zn (range 29–108 μg g−1) and Cd (range 0.06–0.37 μg g−1) increased with total body weight. All equations fit data at P < 0.01 (Fig. 2). Positive correlations between size and metal concentrations suggest that net uptake may occur. Inessential, slowly exchanging metals such as Cd appear to reflect an uptake which tend to become a cumulative process (age dependence of concentrations). The occurrence of insignificant correlation between liver concentrations of Cu (mean value: 4 μg g−1) and environmental concentrations of this metal was consistent with equilibration. Since fish are known to possess the metal binding protein metallothionein, a sequestering agent, detoxification of these metals in fish liver may be by sequestration rather than elimination. Increasing metal concentrations in liver may represent storage of sequestered products in that organ. In the gonads, no significant relationship exists between total body weight and trace metal contents. Results of t-test indicated that females had significantly greater Cu and Zn concentrations, but no significant difference existed between males and females for Cd concentrations (Figs 3 and 4). Thus, the relation between concentration and total body weight appears to be specific as to the species, tissues analyzed and environmental conditions. The comparison of metal concentrations in fish to assess variations in contamination levels requires understanding the relationship between metal concentration and body size within each population.  相似文献   

2.
3.
In this paper, we describe a study of biological denitrification by immobilized cells. Nitrates are reduced in sterile solutions by Pseudomonas aeruginosa immobilized in a fixed bed reactor, and in synthetic waste water by mixed cultures immobilized into a fluidized bed reactor.The fixed bed reactor is a Plexiglas column filled with corn stovers (Table 1). It is 0.05 m in diameter and 0.55 in height, its volume being approx. 11. The fresh medium is injected at the base of the column and the liquid level is regulated by an overflow weir. Reactor and carrier are sterilized with ethylene-oxide. After sterilization 1 l. of a growing batch culture of Pseudomonas aeruginosa is introduced aseptically and the reactor is then fed continuously (45 ml h?1) with fresh medium (NNO3 = 40 mg l?1) until the first steady state is reached.Nitrates and nitrites are determinated by means of a colorimetric method.Reactor efficiency remains constant for over 40 days. Nitrates and nitrites concentrations are measured inside the reactor for flow varying from 2 to 16 ml min?1 (Fig. 2). Reductions of nitrates and nitrites seem to be two first-order reactions (Fig. 3 and Table 2) and constant rate increases with flow rate (Fig. 4). Until nitrate concentration reaches 960 mg/l?1 (NNO3) degradation is correct (Figs 5 and 6), beyond nitrites, which have been formed, seem to be inhibitor.Using this reactor, 50 mg NNO3 have been reduced per hour and per liter of empty reactor, but it may be possible to reduce 140 mg NNO3 l?1 h?1 if fresh medium contains 200 mg NNO3 l?1.The fluidized bed reactor is a Plexiglas column filled with earthenware. It is 0.05 m in diameter and 3.15 m in height, its volume being approx. 6.201. Fresh medium is injected at the base of the column and the liquid level is regulated by an overflow weir. Figure 7 shows the retention time of the liquid in the reactor in relation to flow. The first steady state has been reached after 2 weeks, and it has not been possible to know half life time of the column.Four experiments were conducted (Table 3) and, for each nitrate, nitrite and methanol concentrations in the reactor were measured (Fig. 8). So, it appears that reduction of nitrates and nitrites are two first-order reactions (Table 4) and that constant rate values, which are higher than in fixed bed reactor, increase with flow.The reactor is more affected by a flow shift than by a nitrate concentration shift in fresh medium, and biomass linked onto carrier is about 76 mg of dry matter g?1 of earthenware.So, our fluidized bed column is able to reduce 560 mg NNO3 h?1 l?1 of empty reactor, then retention time of liquid is less than 3 min.  相似文献   

4.
With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g− 1 dry weight) and Cr (0.01 μg g− 1) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g− 1) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g− 1) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g− 1) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g− 1) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g− 1) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g− 1) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p < 0.025), Cr (p < 0.10) and Hg (p < 0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively.  相似文献   

5.
This paper reports a study of pollution in the coastal waters of Jijel, Algeria, using algae Ulva lactuca and Corallina officinalis as bioindicators. Samples of seawater and algae were collected at four different stations from the coast of Jijel, during the period of April–June 2014. The heavy metal content (Pb and Zn) was determined in seawater and in the algae tissue by the technique of atomic absorption spectrophotometry. In seawater, the contents of heavy metals vary from 0.017 to 0.03 mg/l (Pb) and 0.235 to 0.873 mg/l. In the algae tissues, metals concentrations vary between 1.88 to 6.25 μg g?1 dry weight (Pb), and from 92 to 178.9 μg g?1 dry weight (Zn). These levels differ by site and species. The calculation of the bioconcentration factor (BCF) leads us to conclude that algae bioaccumulate significant levels of Pb and Zn metals in their tissues. Our results shows that the species of C. officinalis bioaccumulate the metals Pb and Zn more than U. lactuca, where, high biosorption of Zn was observed with BCF values between 203.21 and 238.40. Zn content in seawater and algae tissues appear higher than standards set by USEPA and guides values of Certified Reference Materials, but Pb levels appear lower than this standard.  相似文献   

6.
The behaviour of Cu, Pb, Zn and Cd in a highly stratified estuary was examined. The distribution of ionic and ‘organically bound” forms of the metals was determined by differential pulse anodic stripping voltammetry (dpasv) before and after u.v. irradiation. The two forms of the metals were compared with the water characteristics of salinity, temperature, turbidity, flow, and inorganic and organic carbon.Irradiation increased the concentration of all four elements detectable by dpasv. The greatest increase was for Cu in the 1 m depth river water which yielded 7.5 μg l−1 before irradiation and 29 μg l−1 after irradiation. Cu and Cd showed minimum concentrations in the seawater layer at 4 m depth, corresponding to the fresh seawater flowing upstream below the halocline. The concentrations of Cu and Cd were higher in the river water than in the underlying seawater. Zn concentration in the river water was lower than in the seawater. Relationships between the trace metal concentrations and the characteristics of the water column are not clear, but the direction of water movement is a major influence.  相似文献   

7.
Concentrations of Cd, Cr, Cu, Pb and Zn were determined in water, sediment and tissues of fish (Cyprinus carpio and Barbus setivimensis) from November 2014 to August 2015, in order to estimate the aquatic pollution in Hammam Grouz dam, by the technique of atomic absorption spectrophotometry. The concentrations of heavy metals in the water and sediment were higher than the WHO standards. The calculation of Bioconcentration factor showed that all fish species studied have accumulated heavy metals in their tissues (gill, liver, muscle and kidney). The concentrations of metals in B. setivimensis were higher than those in C. carpio. The highest concentration of heavy metals was recorded in the gill while the lowest was recorded in the muscle and kidney. Our study reveals that these fish species can be used as bioindicators in the biomonitoring of metallic pollution in aquatic ecosystem.  相似文献   

8.
The addition of Pb2+ (1.0 and 2.5 μg ml?1) and Cd2+ (2.5 and 5.0 μg ml?1) to growth medium decreased the growth of aquatic fungi, while Zn2+ even at a concentration of 10 μg ml?1 had no inhibitory effect. Low concentrations of Cd2+ and Zn2+ on the other hand stimulated mycelial growth. The fungi accumulated considerable amounts of metal from the growth medium, generally in the order Zn2+ > Pb2+ > Cd2+ · Cd2+ was also accumulated by fungi from successive changes of medium containing low concentrations of the metal. Application of Langmuir and Freundlich isotherms to the results showed that the metals were accumulated largely by adsorption to the surface of the mycelium.Three species of aquatic fungi supported the growth of the freshwater shrimp. Gammarus pulex when provided as sole food source, sustaining from 30 to 60% of shrimps fed for a period of 21 days. A marked reduction in shrimp viability occurred however, when G. pulex was fed Pythium sp. containing Cd2+ (150–170 μg g?1), with none of the shrimps surviving beyond 13 days, compared with a survival rate of 60% after 21 days for shrimps fed uncontaminated mycelium. Bodies of poisoned shrimps sampled on day 13 were found to contain Cd2+ (22.03 μg g?1) showing that the metal can be transferred from aquatic fungi to G. pulex, the first step in a food chain involving freshwater fish and higher organisms.  相似文献   

9.
We have measured the concentrations of heavy metals in soils, earthworms and tissues of woodcocks in Quaderna Valley, northern Italy. The soil concentration of metals analysed in this research is consistent with data reported by other authors for uncontaminated or slightly contaminated soils. In earthworms, metals were mostly accumulated in the encapsulating chloragogenous tissue; the positive correlation between Cu concentration in the soil and in earthworms is noteworthy. Heavy metal distribution in the tissues of woodcock showed that Cd accumulation in the kidney was linked to the diet. Cu and Fe were preferentially concentrated in the liver and Zn in the testis. Kidney Cd and Zn concentrations were higher in adults than in juveniles. In addition, a main kidney metallothionein isoform, containing Cd and Zn, was isolated. In the kidney, Cd levels were linearly correlated with the concentration of metallothionein. Of the investigated metals, Cd raises the greatest concern, due to the increasing soil contamination by human activities.  相似文献   

10.
Concentrations of PCBs and α-, β, and γ-HCH have been measured in the aquatic moss Cinclidotus danubicus to examine its potential use an indicator of chlorinated organic pollutants in freshwaters. Samples of Cinclidotus were collected from an uncontaminated stretch of the Saône R. (France) and transplanted in the Durance R., which receives effluents of an insecticide factory. Mosses were sampled 13, 24 and 51 days after the transplant and analysed by capillary column gas chromatography. Concentrations in Cinclidotus transplanted 4 km downstream from the factory reached 0.30 μg g?1 for PCBs, 2.37 μg g?1 for α-HCH, 1.29 μg g?1 for β-HCH and 0.50 μg g?1 for γ-HCH; mean accumulation factors were 616 for α-HCH, 493 for β-HCH, 294 for γ-HCH and 4867 for PCBs. The preponderence of α- and β-HCH over the other pollutants investigated was also observed in water samples, which shows that aquatic mosses can be used as indicators of chlorinated organic pollutants in freshwaters.  相似文献   

11.
Gelatinous macroplankton organisms were collected in May 1984 in Villefranche-sur-Mer Bay and analysed for cadmium, copper, lead and zinc. Analyses were carried out by polarography for Cd, Cu and Pb and by flame atomic absorption for Zn. Phosphorus was also measured in the samples as a biomass parameter due to difficulties inherent in measuring dry weight of gelatinous organisms. The samples belong to the Tunicates, the Cnidarians (Hydromedusae, Siphonophores and Scyphomedusae), the Ctenophores and the Molluscs. Crustaceans living on some Tunicates were also sampled.As regards cadmium, copper and lead, mean concentrations did not show significant differences among the phyla studied: especially for Tunicates with mean values of 0.1 ng Cd μg P−1, 2.0 ng Cu μg P−1 and 0.9 ng Pb μg P−1 and for Cnidarians with mean values of 0.5 ng Cd μg P−1, 2.0 ng Cu μg P−1 and 0.9 ng Pb μg P−1 and for Cnidarians with mean values of 0.5 ng Cd μg P−1, 2.0 ng Cu μg P−1, 1.0 ng Pb μg P−1. On the other hand, mean zinc concentrations were significantly lower in Tunicates (7.9 ng Zn μg P−1) than in Cnidarians (36.8 ng Zn μg P−1).Zinc seems to be preferentially concentrated in organisms which are rich in collagen, constituting the mesoglea, such as the Cnidarians, the Ctenophore and the gelatinous Mollusc studied, rather than in organisms rich in tunicin such as the Tunicates.  相似文献   

12.
Application of the BCR three-step sequential extraction procedure to sewage sludge samples collected at an urban wastewater treatment plant (Dom ale, Slovenia) is reported. The total concentrations of Cd, Cr, Cu, Fe, Ni and Zn and their concentrations in fractions after extraction were determined by flame or electrothermal atomic absorption spectrometry (FAAS, ETAAS) under optimised measurement conditions. Total acid digestion including hydrofluoric acid (HF) treatment and aqua regia extraction were compared in order to estimate the efficiency of aqua regia extraction for determination of total metal concentrations in sewage sludge. It was found experimentally that aqua regia quantitatively leached these heavy metals from the sewage sludge and could therefore be applied in analysis of total heavy metal concentrations. The total concentrations of 856 mg kg−1 Cr, 621 mg kg−1 Ni and 2032 mg kg−1 Zn were higher than those set by Slovenian legislation for sludge to be used in agriculture. Total concentrations of 2.78 mg kg−1 Cd, 433 mg kg−1 Cu and 126 mg kg−1 Pb were below those permitted in the relevant legislation. CRM 146R reference material was used to follow the quality of the analytical process. The results of the BCR three-step sequential extraction procedure indicate high Ni and Zn mobility in the sludge analysed. The other heavy metals were primarily in sparingly soluble fractions and hence poorly mobile. Due to the high total Ni concentration and its high mobility the investigated sewage sludge could not be used in agriculture.  相似文献   

13.
To obtain information on the fate of trace metals discharged to an estuarine environment, analyses have been made on water and sediment samples from Back River, MD., and on effluent from the large wastewater treatment plant that discharges there. Within 2–3 km of the outfall, the concentration (in μg 1−1) of all metals decreases as follows: Mn, > 120-90; Fe, > 570-300; Cu, 53-7; Zn, 280-9; Cd, 3.5-0.5 and Pb, 31-<4. Except possibly for Mn and Fe, these decreases are much greater than can be ascribed to simple dilution, so physical, chemical or biological processes must be removing metals to the sediments. Correspondingly, sediment concentrations of Cu, Zn, Cd and Pb are approximately one order of magnitude higher than normally found in uncontaminated areas. After the initial decrease, concentrations of Mn and Cd in the water begin to rise again, suggesting remobilization from the sediments. Comparison of the estimated annual discharge of 8 trace metals to the Chesapeake Bay from wastewater treatment plants and from rivers suggests that the wastewater input may be within one order of magnitude of the fluvial input for Cr, Cu, Zn, Cd and Pb. Of the metals studied, Cd presents the greatest potential for serious pollution because its input from wastewater probably exceeds fluvial input, it appears to be readily remobilized from sediments, and it is known to be toxic to many organisms.  相似文献   

14.
The distribution of 10 trace metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn have been determined along the northern section of the Shatt al-Arab River, Iraq. Analyses were carried out, employing a flameless AAS instrument. The mean concentrations of the dissolved species were as follows (expressed in μg l?1): 0.25 Cd, 0.9 Cu, 716 Fe, 1.3 Mn, 0.3 Pb, 0.2 V and 1.8 Zn. Mean concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in the particulate matter were 55.2, 6.0, 188, 77, 31 472, 1731, 3807, 93, 207 and 77 μg g?1 respectively. In the exchangeable fraction of the sediment were 0.15, 5.5, 11.1, 11.9, 1625, 482, 42, 30.5, 25.7 and 6 μg g?1, whereas in the residual were 0.025, 11.5, 96.1, 22, 5176, 258, 613, 3.9, 162 and 56.8 μg g?1 respectively. Thus, the exchangeable trace metals represent the following mean percentage of the total; 75% Cd, 33% Co, 10% Cr, 34% Cu, 24% Fe, 63% Mn, 7% Ni, 74% Pb, 14% V and 23% Zn. The concentration of Ni and V were relatively high, this was attributed to the petroleum-rich deposits of the region. The concentrations observed for other metals were lower or equal to those reported for control sites except for Pb which was slightly higher. The data obtained were subjected to simple linear regression analysis and expressed in the form of correlation coefficients. It was found that the inter-elemental relationships are rather complex.  相似文献   

15.
The use of biological indicators in studies of aquatic pollution (in fresh, estuarine or sea waters), as well as research about the metal transfers in food chains, need a great accuracy of the trace element determination. Therefore, as shown by the results of international intercalibration exercises, the mastery of analytical techniques is far from being perfect in all the laboratories.One of the main sources of error in atomic absorption results from non-specific absorptions due to the presence of important organic and mineral matrixes in biological materials and especially in aquatic and marine organisms. In this case, the correction of unspecific absorption by using deuterium lamp was insufficient and the determination of trace elements had to be preceded by a pre-instrumental stage which allowed the elimination of the organic matter by mineralization and of a large part of the mineral matrix by extraction. The previous separation was long and induced contamination risks. The use of the Zeeman effect background correction allows the transfer of most processes from the pre-instrumental to the instrumental stage. Moreover, the Zeeman effect has three advantages: (1) the background correction is effective up to 2 units of absorbance; (2) the correction is effective from 190 to 900 nm; (3) the method of the double beam is optimalized.The aim of this study was to apply the Zeeman effect to the determination of eight trace elements (Ag, Cd, Cr, Cu, Mn, Ni, Pb, Se) in three different biological solid samples, two originated from the marine environment (lobster hepatopancreas TORT-1, standard reference material from the National Research Council Canada; oyster tissues SRM 1566 from the US National Bureau of Standards) and one from the vegetable kingdom (tomato leaves, SRM 1573 from the US NBS).The experimental procedure is reduced to a minimum since it consists in the digestion of an aliquot of 100 mg of the powdered sample with 1 ml of concentrated nitric acid at 95°C for 1 h. Then the volume is adjusted to 4 ml with deionized water. The metal analysis is carried out using a graphite furnace coated with tantalum carbide.This analysis is achieved according to the method of standard addition. The three added concentrations used for each element are listed in Table 1. The analytical conditions and graphite atomizer program are indicated in Table 2. The temperature program has to be modified according to the type of equipment.The internal quality control of the suggested method related to four criteria: sensitivity, repeatability, accuracy, practicability. The results are shown in Table 3. The threshold of sensitivity (3 times the SD of a series of eight results obtained for a blank of digestion) are low: < 1 μg kg−1 for Ag, Cd and Mn; 1 μg kg−1 for Cr and Pb; 5 μg kg−1 for Cu and Ni and 15 μg kg−1 for Se. The variation coefficients, calculated for both two series of six determinations each, are generally included between 5 and 10%. The trace element concentrations determined by using this method are in perfect agreement with the certified values of the US NBS and NRC Canada (Table 3.)The quality of the results establishes the possibility of using a very easy and fast method to determine the level of eight trace elements in materials with high mineral and organic matter content.  相似文献   

16.
The potential of cattle manure vermicompost and Brazilian soils (whole soils and soils incubated with vermicompost) was assessed for adsorption of heavy metals such as Cu(II) and Cd(II) from aqueous solutions. Experimental data have been fitted to Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model, with R 2 values from 0.89 to 0.99. Based on the maximum adsorption capacity obtained from the Langmuir isotherm the affinity of the studied metals for the vermicompost and soils have been established as Cu(II) > Cd(II). The values of the separation factor, R L, which has been used to predict affinity between adsorbate and adsorbent were between zero and 1, indicating that sorption was very favourable for Cu(II) and Cd(II) in synthetic solution. Addition of vermicompost to soils resulted in higher distribution coefficient, K d, as compared with whole soils. The thermodynamic parameter, the Gibbs energy changes, was calculated for each system and the negative values obtained confirm that the adsorption processes are spontaneous. The ΔG° values for the substrates were between ?2.630±1.41 kJ mol?1 and ?13.700±1.250 kJ mol?1. Adsorption tests from multimetal systems confirm the affinity order obtained in the individual metal tests. The adsorption capacity for Cu(II) measured in individual tests is not reduced by the presence of Cd(II). There is also desorption of Cu(II) and Cd(II) previously bound to vermicompost, whole soils and soils incubated with vermicompost by DTPA. The experiment indicates the importance of cattle manure vermicompost and oxisol amended with vermicompost in relation to Cu(II) and Cd(II) adsorption from aqueous solution.  相似文献   

17.
The uptake of trace metals in the leaves of fast-growing woody species is a crucial factor in ecological risk assessment and in the evaluation of phytoextraction potentials. In this study, we present a long-term data series of foliar Cd, Zn, Mn and Cu concentrations in poplar (Populus trichocarpa x P. deltoides). Leaves were collected every three weeks from 2001 until 2007 on three sites, (i) a new plantation on an alluvial soil polluted by river sediments, (ii) a new plantation on an unpolluted soil and (iii) a 10-year old plantation on a polluted dredged sediment soil. In addition, tree rings were measured on the alluvial soil in order to better assess growth over the past seven years. Foliar concentrations of Cd, Zn and Mn decreased considerably with time in the new plantation on polluted soil. Concentrations of Zn and Mn decreased in the new plantation on unpolluted soil as well. The older plantation on polluted soil did not show changes in foliar concentrations for Cd, Zn or Mn. Foliar Cu concentrations slightly increased for all sites. Within one growing season, foliar concentrations of Cd, Zn, Cu and Mn increased towards the end of the season. The tree ring data of the poplars on the alluvial soil indicated a strong decrease in growth due to declining tree condition from 2005 onwards, the same year that foliar Cd and Zn concentrations markedly decreased. Lower transpiration rates probably induced a lower uptake of dissolved trace metals. It is concluded that stand health and growth rate have a strong impact on the variation of foliar trace metal concentrations over time.  相似文献   

18.
Sources of Cd,Cu, Pb and Zn in biowaste   总被引:5,自引:0,他引:5  
Biowaste, the separately collected organic fraction of municipal solid waste, can be reused for soil conditioning after composting. In this way, environmentally harmful waste management strategies, such as landfilling or incineration, can be reduced. However, frequent application of composts to soil systems may lead to the accumulation of heavy metals in soils, and therefore legal criteria were laid down in a decree to guarantee the safe use of composts. The heavy metal content of biowaste-composts frequently exceeds the legal standards, and thus raises a conflict between two governmental policies: the recycling of solid waste on the one hand, and the protection of natural ecosystems and public health on the other hand. In this study, the heavy metal content (Cd, Cu, Pb and Zn) of biowaste was compared with the natural background content of Cd, Cu, Pb and Zn in the different constituents of biowaste. For this, the physical entities of biowaste were physically fractionated by wet-sieving and subsequent water-elutriation. In this way, organic and inorganic fractions of different particle sizes were obtained and the content of Cd, Cu, Pb and Zn and the organic matter content of the different fractions were determined. On the basis of particle size, density and visual appearance, the particle-size fractions were assigned to various indoor and outdoor origins of the biowaste. It was found that a large amount of biowaste was not organic, but over 50% was made up of soil minerals due to the collection of biowaste constituents from gardens. The heavy metal content of the various fractions in biowaste was compared with the natural background contents of heavy metals in the constituents of biowaste, i.e. food products, plant material, soil organic matter and soil minerals, by collecting literature data. The heavy metal content in the fractionated physical entities of biowaste corresponded with the natural background concentration of its constituents and indicated that biowaste was not contaminated by other sources. However, the natural background content of biowaste constituents will result in heavy metal contents for biowaste-compost that will exceed the legal standards. It is advised that the legal standards for composts should be critically re-examined. The protection of soil systems could be better guaranteed if the input of heavy metals was evaluated for all inputs of fertilisers and soil conditioners, i.e. animal manures, various types of compost and artificial fertilisers.  相似文献   

19.
The distribution of Cd, Cu, Pb, and Zn in eelgrass (Zostera marina L.) was studied at three locations with different heavy metal loads in the Limfjord, Denmark.The eelgrass was fractionated into roots, rhizome, stem, and leaves according to age, and the heavy metal concentrations in each fraction were determined. The distribution patterns of the four heavy metals in eelgrass were independent of the heavy metal loads at the sampling stations. The concentrations of all metals were greater in the roots than in the rhizomes. In the aerial1 parts two different age-dependent distribution patterns were observed. The concentrations of Cd, Pb, and Zn increased with age while the opposite was true for Cu. The distribution of lead correlated with the distribution of ash content. These age-dependent distribution patterns were maintained throughout the observation period and were most pronounced for Cu and Zn in winter.The heavy metal distribution in eelgrass is discussed in relation to gross morphology, especially age-structure. It is suggested that the accumulation of Cd, Pb, and Zn is due to a slow irreversible uptake or to the existence of more binding sites in old leaves. The distribution of Cu can be explained by translocation within the plant, dilution due to growth or leakage from the older leaves.  相似文献   

20.
Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号