首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

The unsteady fluid stream and warmth transmission nearby a square cylinder with sharp and rounded cornered edges are numerically examined, and then the roundness of the corner is predicted and optimized for the minimum fluid forces and maximum heat transmission rate. The roundness of the cylinder corner is changing 0.5D (circle) to 0.71D (square); D is the depth of the cylinder. The fluid flow and the heat transmission features around the sharp and curved cornered square cylinder are evaluated with the streamline, isotherm patterns, pressure coefficient, drag and lift coefficients, local Nusselt number (Nulocal) and average Nusselt number (Nuavg) at different Re and for several roundness values. These characteristics are predicted by the gene expression programming, and then the multi-objective genetic algorithm is utilized for the optimization. A number of combinations of values of corners have been found in the form of Pareto-optimal solution to compromise the minimum fluid forces with maximum heat transfer rate.

  相似文献   

3.
The steady flow around and through a porous circular cylinder was studied numerically. The effects of the two important parameters, the Reynolds and Darcy numbers, on the flow were investigated in details. The recirculating wake existing downstream of the cylinder is found to either penetrate into or be completely detached from the cylinder. It is also found that, contrary to that of the solid cylinder, the recirculating wake develops downstream of or within the porous cylinder, but not from the surface of it. These new findings provide additional evidence to Leal’s conclusion (Leal LG. Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys Fluids A 1989;1:124) that the appearance of recirculating wakes at finite Reynolds number is due to vorticity accumulation, but not a result of the same physical phenomena associated with separation in boundary layers in adverse pressure gradients. Also presented in the current study are the variation of the critical Reynolds number for the onset of a recirculating wake as a function of Darcy number and the variation of a newly defined parameter, the penetration depth, as a function of the Reynolds number and Darcy number.  相似文献   

4.
Heat transfer of Cu–water nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The group method of data handling (GMDH) type neural networks (NNs) is used to calculate Nusselt number formulation. Results indicate that GMDH-type NN in comparison with fourth-order Runge–Kutta integration scheme provides an effective means of efficiently recognizing the patterns in data and accurately predicting a performance. The effects of nanoparticle volume fraction, magnetic parameter and Reynolds number on Nusselt number are studied by sensitivity analyses. The results show that Nusselt number is an increasing function of Reynolds number and volume fraction of nanoparticles while it is a decreasing function of magnetic parameter. As volume fraction of nanoparticles increases, the effect of this parameter on Nusselt number also increases, but opposite behavior is obtained for magnetic parameter and Reynolds number.  相似文献   

5.
Semi-analytic solutions of the Navier-Stokes equations are calculated for two-dimensional, symmetrical, viscous incompressible flow past a circular cylinder. The stream and vorticity functions are expanded in the finite Fourier series and then substituted in the Navier-Stokes equations. This led to a system of coupled parabolic partial differential equations which are solved numerically. More terms of the series are required as Reynolds number increases and the present calculations were terminated at Reynolds number 600 with 60 terms of Fourier series. The results are compared with similar calculations and experimental data for Reynolds numbers 60, 100, 200, 500, 550 and 600. At the termination of the calculations for Reynolds numbers 60 and 100, the separation angle, the wake length, the drag coefficient, and the vorticity distributions around the surface were very close to their steady-state values. A secondary vortex appeared on the surface of the cylinder in the case of Reynolds numbers 500, 550 and 600. The wake length, the drag coefficient and the separation angle differ slightly at a given instant in the case of Reynolds numbers 500, 550 and 600.  相似文献   

6.
Wei Xie 《Computers & Fluids》2008,37(10):1262-1275
This study examines the use of a level set based embedded interface method to simulate fluid-solid heat transfer processes using Cartesian grids. The flow field is described by the incompressible 2D Navier-Stokes equations using a vorticity-streamfunction approach. A fluid-solid coupling formulation for the thermal and momentum fields is developed that is robust, computationally efficient and second-order accurate. Solutions for several example problems are presented for flow over stationary and moving cylinders to bench mark the current approach. Heat transfer for an isolated cylinder and two cylinders in series are then examined to explore the Nusselt number dependence on cylinder spacing and unsteady conjugate heat transfer processes.  相似文献   

7.
The flow around an impulsively started elliptic cylinder at 0, 30, 45 and 90° incidence is investigated. The fluid is viscous, incompressible and its flow is governed by the Navier-Stokes equations. Semi-analytical solutions are calculated by solving numerically the system of coupled partial differential equations which are obtained by substituting the expanded finite Fourier Series of the stream and vorticity functions in the Navier-Stokes equations. The symmetrical solutions are presented for Reynolds number 200 and eccentricity 0.809 and 0.943 in terms of patterns of streamlines, lines of constant vorticity, pressure and vorticity distributions around the surface, drag coefficient and wake length at 0 and 90° and compared with the experimental results. A comparison of the calculations has been made for Reynolds number 100 and eccentricity 0.648 with different number of terms at 90°. A Kármán vortex street develops for Reynolds numbers 200 and 60 at 30 and 45° incidence and the solutions are presented in terms of various characteristics including Strouhal number. The vanishing of wall-shear does not denote separation in any meaningful sense in various cases.  相似文献   

8.
丁润冬  吴明晖  周围 《软件》2020,(3):133-136
辛烷值是汽油使用性能的一项重要指标,表示汽油的抗爆震性能。目前国际上公认的标准测试仪器是ASTM-CFR试验机,其工作原理是通过调节气缸高度,改变体积的变化来调节压缩比变化,从而使试样达到最大爆震进行测量。其工作原理是通过采取固定气缸高度,通过等容可变压缩压力系统来调节缸内压强的方式来测定辛烷值.因为质量法是通过控制进气量来改变缸内的压强,所以发动机缸内压强可以比传统的改变气缸高度达到更大的范围。并对辛烷值测定机的控制系统软件进行设计,通过控制相关参数,使其达到稳定状态,使最后的测试结果。  相似文献   

9.
The process of shedding of vortices from a circular cylinder is discussed by computing an unsteady viscous fluid flow at Reynolds number 200 under natural boundary conditions with a fine mesh near the surface of the cylinder. The phenomena of shedding of vortices is described by drawing streamlines patterns and the equivorticity lines at different times. The variations of the vorticity distribution, the pressure distribution and the drag coefficient at different times are shown by graphs. The Strouhal number for the shedding process is calculated and compared with the known results.  相似文献   

10.
The analytical solution for heat transfer in a dynamic and thermally fully developed channel flow of the simplified Phan-Thien–Tanner fluid induced by combined electro-osmosis and pressure gradient was obtained assuming that material properties are independent of temperature. The flow forcing was quantified by an appropriate dimensionless parameter and its effect and that of all other relevant dimensionless numbers is presented and discussed. Specifically, the forced convection occurs under conditions of constant wall heat flux and the solution includes the effects of Weissenberg number, electric double layer (EDL) thickness, forcing ratio parameter, viscous dissipation as well as of Joule heating due to the electric currents and was obtained under the simplifying Debye–Hückel approximation. Generally speaking, the Joule effect is stronger than the viscous dissipation except in very narrow channels, but these fall outside the validity of the Debye–Hückel conditions. For pure electro-osmosis, viscous dissipation is restricted to the near-wall region and virtually nonexistent elsewhere, so it is irrelevant for thin electric double layers and Joule heating is more relevant. As the EDL thickens and/or the pressure gradient contribution increases, the role of viscous dissipation grows and shear-thinning effects also appear more clearly on the Nusselt number. Generally speaking, an increase in internal heating results in lower Nusselt numbers and this effect is stronger than the effect of shear-thinning, which is responsible for a slight increase in the Nusselt number.  相似文献   

11.
Currently, the interaction between free surface flow and an elastic structure is simulated with monolithic codes which calculate the deformation of the structure and the liquid–gas flow simultaneously. In this work, this interaction is calculated in a partitioned way with a separate flow solver and a separate structural solver using the interface quasi-Newton algorithm with approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS). The interaction between an elastic beam and a sloshing liquid in a rolling tank is calculated and the results agree well with experimental data. Subsequently, the impact of both a rigid cylinder and a flexible composite cylinder on a water surface is simulated to assess the effect of slamming on the components of certain wave-energy converters. The impact pressure on the bottom of the rigid cylinder is nearly twice as high as on the flexible cylinder, which emphasizes the need for fluid–structure interaction calculations in the design process of these wave-energy converters. For both the rolling tank simulations and the impact simulations, grid refinement is performed and the IQN-ILS algorithm requires the same number of iterations on each grid. The simulations on the coarse grid are also executed using Gauss-Seidel coupling iterations with Aitken relaxation which requires significantly more coupling iterations per time step.  相似文献   

12.
An experimental campaign was carried out studying laminar and turbulent heat transfer in uniformly heated smooth glass and rough stainless steel microtubes from 0.5 mm down to 0.12 mm. Heat transfer in turbulent regime proved to be coherent—within experimental accuracy—with the classic Gnielinski correlation for the Nusselt number. For the laminar case, an anomalous drop in Nusselt number for decreasing Reynolds number was observed in the smooth glass tubes. As the stainless steel tubes manifested relatively normal diabatic behaviour in this regime (apart from the evident influence of the thermal development region that increases heat transfer above the thermally fully developed value), the explanation of this unexpected diminution of the Nusselt number must be sought in the dispersion of heat, put in externally through the thin film deposited on the glass tube outer surface, to peripheral attachments to the test section. This distorts the measured energy balance of the experiment, especially as the convective force of the fluid diminishes, resulting in lower Nusselt numbers at lower Reynolds numbers.  相似文献   

13.
A hypersonic flow over an axisymmetric aircraft is numerically simulated in the case of a highly underexpanded exhaust plume (jet) of the main engine. The characteristics of the boundary layer separation occurring on the aircraft’s side surface are investigated for several successive points of its takeoff path. The Mach number at the nozzle exit is 6.5. The Mach number of the incoming flow varies from 4 to 7. In this case, the Reynolds number ranges from 2.5 × 105 to 3 × 103 and the ratio of the nozzle’s exit pressure to the ambient pressure, from 350 to 5 × 104. In the case of the Mach number of the incoming flow M = 4, the variation range of the pressure ratio extends to 106. Replacement of the exhaust plume with a rigid simulator is considered. Data are obtained on the pressure ratios for which a separation flow begins to form on the side surface, the recirculation zone length, and the level of pressure in it in comparison with the available empirical dependences. A significant increase of the recirculation zone in front of the exhaust plume is shown when it is replaced by a rigid simulator of the same dimensions.  相似文献   

14.
圆柱绕流的二维数值模拟和尾迹分析   总被引:1,自引:0,他引:1  
为指导机械设计中参数和布局的选择,研究固定在水流中的圆柱结构件的受力情况和流场分布.利用FLUENT中的三种湍流模型对雷诺数为3900的圆柱绕流进行二维数值模拟并进行对比,得到升力因数、阻力因数、分离角、斯特劳哈尔数和涡街尺寸等参数的模拟结果,与参考文献中的实验结果对比验证二维模拟的预测精度.RKE(Realizable k-ε)和雷诺应力模型(Reynolds Stress Model,RSM)均能在此雷诺数下得出接近实验结果的流场,RSM模型使用POWER LAW离散格式的结果优于QUICK格式.与三维模拟的对比表明二维模拟适合在设计初期的快速估算,能够快速得到合适精度的模拟结果.  相似文献   

15.
A steady and laminar convective flow has been numerically simulated in the fully-developed annular region of a finned double-pipe subjected to the constant heat flux boundary condition imposed at the inner-pipe wall. Finite element method has been employed in this study. Friction factor and Nusselt number have been studied as flow characteristics against variations in the ratio of radii of the inner and the outer pipes, the fin height, the fin half angle and the number of fins. The results show significant enhancement in the heat transfer rate in both the cases when sufficient pumping power is available and when it is not. The minimum and maximum increase in the product of friction factor and Reynolds number relative to the finless geometry is more than one time and more than 40 times respectively while gain in the relative value of Nusselt number lies in the range 1–177. This provides an evidence of more than four times enhancement in the heat transfer coefficient relative to that in the pressure loss as a result of extended fin surfaces.  相似文献   

16.
耐高压FBG压力传感器实验研究   总被引:1,自引:0,他引:1  
为了提高光纤Bragg光栅(FBG)的压力灵敏度以实现油气井下高压传感的测量要求,设计了一种以薄壁筒为衬底外加保护套的耐高压FBG传感器。将FBG沿着弹性筒的轴向用高温胶固化在筒的内部。由于外界油压将引起弹性筒轴向压缩并传递到FBG上引起FBG波长的变化,测量FBG波长的变化即可得到外界压力的变化。理论得到传感器的压力响应灵敏度为-0.035nm/MPa;0-40MPa压力范围内压力实验测得传感器压力响应灵敏度为-0.0339nm/MPa,线性拟合度为0.9997,理论和实验符合得很好。结果表明:该传感器性能稳定,线性度和重复性好,可以用于油气井下高压的实时测量。  相似文献   

17.
运用平均场动态密度泛函理论,对球状三嵌段共聚物在圆柱型受限空间的相行为进行了模拟研究。模拟结果表明:在不同的受限空间和表面场中,体系能够形成环绕表面的堆叠圆环、竖直的柱状相、有洞的层状相和同轴的层状相等不同于本体的有序微观结构。另外,新的序参量被定义,较好地反映了嵌段共聚物微观相分离的程度及相变情况。研究结果对实验制备新型高分子纳米材料提供了帮助。  相似文献   

18.
为了能更好地掌握运动者的运动力度,尽可能地减小运动中由于运动过剧造成的损伤,设计了一种气动健身器材,通过实际的气缸压力与霍尔传感器检测出气缸活塞的位移来计算器材使用者所承受的拉力,并结合记录气缸活塞的运动次数来计算运动者消耗的热量,更直观地显示出运动者的运动情况。经过测试,霍尔传感器反应灵敏,检测结果准确,系统稳定性良好,有较高的实用性。  相似文献   

19.
通过水池试验研究了在雷诺数Re为3.19×104~1.15×106,攻角为0°~180°,以15°为间隔,表面倾斜且前后不对称的四边形锥柱状结构在均匀流场中所受的压力载荷。分析了模型所受的周向压力和斯特劳哈尔数Sr随Re和攻角的变化趋势。结果表明:与圆柱绕流相比,倾斜壁面和攻角使压力在背压区和边界层分离点发生变化,同时,Sr也由0.2降到0.13。  相似文献   

20.
为优化换热器的结构设计,用格子Boltzmann方法(Lattice Boltzmann Method,LBM)结合多孔介质模型模拟换热器内的换热,研究雷诺数、普朗特数和热扩散率比的变化对温度场和换热性能的影响.模拟结果表明:在小雷诺数范围内,随着雷诺数的增加,努塞尔数先增加后减小,即存在一个使换热性能达到最好的雷诺数;随着普朗特数的增加,努塞尔数减小,换热性能降低;随着热扩散率比的增加,换热性能提高.分析不同管柱排列方式对换热性能的影响,结果表明:叉排的换热效果明显优于顺排,当横向节距等于2时,对于均匀顺排或叉排,努塞尔数均随纵向节距的增加而减小,这与实验结果相符;对于非均匀叉排,采用"前密"或"中间密"的排布方式有利于换热.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号