首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Kostamo A  Kukkonen JV 《Water research》2003,37(12):2813-2820
The wastewater treatment plant of an elemental chlorine free bleaching kraft pulp mill located in eastern Finland was sampled in order to study the fate of wood extractives and the toxicity to luminescence bacteria (Vibrio fischeri) in different parts of the plant. Resin acids and sterols were analyzed from water, particles and sludge samples during three different runs. Waters before biotreatment and primary sludge were found to be toxic; but in the activated sludge treatment toxicity was removed. During wastewater treatment, concentrations of wood extractives were reduced over 97%. In activated sludge treatment, over 94% of the resin acids and over 41% of the sterols were degraded or transformed to other compounds. Furthermore, in general, less than 5% of the resin acids and over 31% of the sterols were removed in biosludge to the sludge thickener. Most of the extractives were discharged attached to particles. Although some disturbing factors increased the load of wood extractives during samplings, these factors did not affect the operational efficiency of the secondary treatment system.  相似文献   

2.
Addition of powdered activated carbon (PAC) to the aeration basin of an activated sludge treatment plant fed with dye-works waste waters increases the purifying capacity of the plant: removal efficiency rises from 55.8 to 75.6% (COD) and from 78 to 98.5% (BOD5) and the nitrification-denitrification capacity of the system also increases.The sludge growth parameters and the kinetic constant of biological oxidation were determined on the plant with and without PAC. The addition of PAC decreased overall sludge growth rate and the auto-oxidation factor, but increased the biological removal rate of the substrate by about one order of magnitude.  相似文献   

3.
结合福州市金山污水处理厂工艺及及活性污泥培养驯化实例,分析总结ICEAS工艺启动及活性污泥培养驯化经验。  相似文献   

4.
Three commercial nanofiltration membranes were used for the removal of chlorinated organic compounds from the first alkaline extraction effluent originated from a kraft mill, using eucalyptus wood as raw material. The assays were carried out at the following operating conditions: pressure = 20 bar, TEMPERATURE = 20°C and circulation VELOCITY = 2 m/s. The results show the nanofiltration feasibility. For the three membranes the rejection factors of chlorinated organic compounds are greater than 95% and two of them present permeate fluxes of approx. 42 kg/hm2. Several reference solutes with a wide range of molecular weights and functional groups were also permeated. Their results compared with those of mill effluent allow us to conclude that the effluent tannic compounds are not in a fouling form and that the majority of the organochlorinated matter has a molecular weight greater than 500 Da.  相似文献   

5.
The aim of this study is to assess the ability of local low‐cost biomaterials to remove reactive dyes from aqueous solutions. Granules prepared from dried activated sludge (DAS) were used as a sorbent for the removal of red bimacid dye (E5R) chosen as model dye. The study involves batch type experiments to investigate the effects of initial dye concentration, adsorbent dose, contact time, temperature and pH of solution on biosorption process. Optimal experimental conditions were ascertained. The pseudo‐second‐order kinetic model fits very well with the experimental results. The thermodynamic parameters for the biosorption process have also been calculated and found the sorption process as exothermic. The sorption performance of this DAS is finally compared with that of different reference sorbents and of other low‐cost materials.  相似文献   

6.
This paper presents the performance of two full‐scale up‐flow anaerobic sludge blanket–activated sludge process (UASB‐ASP)‐based sewage treatment plants (STPs) (surface and diffused aeration‐based activated sludge processes as post‐treatment units). Performance of this combination is compared with UASB–polishing ponds and UASB–ozonation‐based STPs. Post‐treatment units removed 89 and 92% of anionic surfactants (AS) by surface and diffused aeration, respectively. Finally, 0.61 and 0.23 mg/L of AS were discharged from post‐treatment steps after overall reduction of 90–92%. Final concentrations from UASB‐ASP‐based STPs were low compared with UASB–polishing ponds (3.60–4.91 mg/L) and UASB–ozonation (1.52 and 0.53 mg/L). Overall, UASB‐ASP‐based STPs were working efficiently for the removal of organics in terms of chemical oxygen demand (COD) (84%) and biochemical oxygen demand (BOD) (93%), but they need further modifications for the removal of AS up to the level of risk quotient [risk quotient (RQ)] ≤ 1 for no risk to aquatic environment.  相似文献   

7.
We measured six acidic analgesics or anti-inflammatories (aspirin, ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid), two phenolic antiseptics (thymol, triclosan), four amide pharmaceuticals (propyphenazone, crotamiton, carbamazepine, diethyltoluamide), three phenolic endocrine disrupting chemicals (nonylphenol, octylphenol, bisphenol A), and three natural estrogens (17beta-estradiol, estrone, estriol) in 24-h composite samples of influents and secondary effluents collected seasonally from five municipal sewage treatment plants in Tokyo. Aspirin was most abundant in the influent, with an average concentration of 7300 ng/L (n = 16), followed by crotamiton (921 ng/L), ibuprofen (669 ng/L), triclosan (511 ng/L), and diethyltoluamide (503 ng/L). These concentrations were 1 order of magnitude lower than those reported in the USA and Europe. This can be ascribed to lower consumption of the pharmaceuticals in Japan. Aspirin, ibuprofen, and thymol were removed efficiently during primary + secondary treatment (> 90% efficiency). On the other hand, amide-type pharmaceuticals, ketoprofen, and naproxen showed poor removal (< 50% efficiency), which is probably due to their lower hydrophobicity (logKow < 3). Because of the persistence of crotamiton during secondary treatment, crotamiton was most abundant among the target pharmaceuticals in the effluent. This is the first paper to report ubiquitous occurrence of crotamiton, a scabicide, in sewage. Because crotamiton is used worldwide and it is persistent during secondary treatment, it is a promising molecular marker of sewage and secondary effluent.  相似文献   

8.
Since its initial development and application, the activated sludge process has undergone a continual evolution aimed at maximizing process efficiency and controlling population selection. Organic loading rate, dissolved oxygen concentration and reactor configuration have been implicated as key process variables affecting sludge settleability, their combined effects determining which microbe or microbes are best able to grow and survive in a given system. Using available pure and mixed culture observations, a conceptual hypothesis centered around three model organisms has been developed to explain the growth and control of filamentous organisms in activated sludge. Organism selection in continuously fed systems has been hypothesized to be dominated by filamentous organisms with high sustainable growth rates at low reactor substrate concentrations/organic loading rates and filaments best able to compete for dissolved oxygen at elevated reactor substrate concentrations/organic loading rates. Intermittently fed systems, on the other hand, enrich for nonfilamentous organisms which both rapidly extract substrate from solution and maintain peak activity during extended periods of endogeneous metabolism. While both types of reactor induced feeding patterns can control filamentous organism growth, intermittently fed systems are capable of operation over a wider range of operating conditions by accentuating differences in organism physiology. Additional selection pressures such as substrate composition, non-ideal reactor hydraulics and time-variable influent waste streams were also discussed in relation to their impact on idealized systems.  相似文献   

9.
In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 μg/L) and acetaminophen (7.1-11.4 μg/L), antibiotic ofloxacin (0.89-31.7 μg/L), lipid regulators gemfibrozil (2.0-5.9 μg/L) and bezafibrate (1.9-29.8 μg/L), β-blocker atenolol (0.84-2.8 μg/L), hypoglycaemic agent glibenclamide (0.12-15.9 μg/L) and a diuretic hydrochlorothiazide (2.3-4.8 μg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., β-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated.Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.  相似文献   

10.
Integrated kraft pulp and paper mill wastewater was characterized before (influent) and after (effluent) the activated sludge process by microfiltration (8, 3, 0.45 and 0.22 μm) and ultrafiltration (100, 50, 30 and 3 kDa) into different size fractions. Wood extractives, lignin, suspended solids and certain trace elements were determined in each fraction. Forty four percent of the resin and fatty acids in the influent (12.8 mg/L) occurred in particles (>0.45 μm), 20% as colloids (0.45 μm-3 kDa) and 36% in the <3 kDa fraction. The corresponding values for sterols (1.5 mg/L) were 5, 46 and 49%. In the effluent, resin and fatty acids (1.45 mg/L) and sterols (0.26 mg/L) were mainly present in the <3 kDa fraction, as well as a small proportion in particles. β-sitosterol was present in particles in the effluent (88 ± 50 μg/L). Lignin in the influent was mainly in the colloidal and <3 kDa fractions, whereas in the effluent it was mainly in the <3 kDa fraction. Thus the decrease of lignin in the biological treatment was concentrated on the colloidal fraction. In the influent, Mn, Zn and Si were mainly present in the <3 kDa fraction, whereas a significant proportion of Fe and Al were found also in the particle and colloidal fractions. In the effluent, Fe and Al were mainly present in the colloidal fraction; in contrast, Mn, Zn and Si were mainly in the <3 kDa fraction. The results indicated that the release of certain compounds and elements into the environment could be significantly decreased or even prevented simply by employing microfiltration as a final treatment step or by enhancing particle removal in the secondary clarifier.  相似文献   

11.
Confirmation of the ready and ultimate biodegradation of para-dichlorobenzine (pDCB) was obtained from the Organisation for Economic Cooperation and Development (OECD) closed bottle test. The fate of pDCB during primary sedimentation of raw sewage was investigated in a simple laboratory study, and the results indicated that the major proportion of the material (> 67%) remained in the supernant liquor, and would therefore undergo biological treatment. The removal of pDCB in the OECD confirmatory test was found to be consistently high (97.1 ± 2.3%). Mass balance results indicated that, at a high aeration rate (21 min−1), the major mechanism for removal of pDCB was volatilization (66.6 ± 19.3%). The fate of pDCB in a modified porous pot test, operated at a lower aeration rate, and at temperatures of 8, 15, and 20°C and sludge retention times (SRT) of 3 and 6 days, was also investigated. Once again the overall removal was found to be consistently >95%. Mass balance results suggested that, under normal operating conditions, the major proportion of pDCB (>76%) had been removed by biodegradation. The amount of pDCB removed by volatilization showed a slight dependence on aeration rate, but only became significant (63 ± 4%) when adverse operating conditions prevailed (i.e. 8°C, at a 3 day SRT). Radioisotopic studies confirmed the presence of pDCB degrading bacteria in activated sludge taken from a porous pot continuously dosed with pDCB. The results of a similar test using sludge from an undosed porous pot suggested that acclimatization to pDCB was rapid, occurring within 2 days. No adverse effects on sewage treatment processes, due to the presence of pDCB, were observed.  相似文献   

12.
Pulp and paper mill wastewater was characterizated, before (influent) and after (effluent) biological wastewater treatment based on an activated sludge process, by microfiltration (8, 3, 0.45 and 0.22mum) and ultrafiltration (100, 50, 30 and 3kDa) of the wastewater samples into different size fractions. Various parameters were measured on each fraction: molecular weight distribution (MWD) using high performance size exclusion chromatography (HPSEC), total organic carbon (TOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (Tot-P), phosphate phosphorus (PO(4)-P), electrical conductivity, pH, turbidity, charge quantity and zeta potential. The MWD, TOC and COD(Cr) results indicated that the majority of the material present in both the influent and effluent was in the medium molecular weight (MW) range (i.e. MW<10kDa) with three main MW sub-fractions. There were no significant differences in the range of the MWD between the influent and effluent samples. The magnitude of the MWD in the effluent was about one half that in the influent, the greatest reduction being in the 6kDa fraction. The 3kDa fractions of both the influent and effluent showed a considerable increase in BOD(7), probably due to the removal of compounds harmful to bacteria in 3kDa ultrafiltration. Influent turbidity decreased considerably in microfiltration (8-0.22mum). As the turbidity was removed by 0.22mum filtration, the anionic charge quantity started to decrease. Particles in the influent and effluent contained 19-29% and 14-20% of the total phosphorus, respectively. The major phosphorus fraction was in the form of soluble phosphate.  相似文献   

13.
The fluxes of linear alkylbenzenesulphonates (LAS), nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) through sewage and sludge treatment of 29 Swiss sewage treatment plants were investigated. Reversed-phase high-performance liquid chromatography (HPLC) was used to determine LAS. Normal-phase HPLC was employed to measure NP, NP1EO and NP2EO which are metabolites of the nonionic surfactants of the nonylphenol polyethoxylate type (NPnEO). Quantitative determinations were performed of raw sewage, primary and secondary effluents and of sewage sludge. Under normal conditions of sewage and sludge treatment, LAS were efficiently removed from the raw wastewater (> 99% w/w) and were partly transferred to the sewage sludge (15–20% w/w). About 50% (molar base) of NPnEO in the sewage were transformed to NP and accumulated in the digested sludge. Large variations existed among different sewage treatment plants. It was estimated that 1.0 g m−2 y−1 of LAS and 0.3 g m−2 y−1 of NP are applied with sewage sludge to Swiss soils.  相似文献   

14.
Huge efforts have been made both in adopting more environmental-friendly bleaching processes, and in developing advanced oxidation processes and more effective biological treatments for the reduction of deleterious impacts of paper mill effluents. Even so, the success of such treatments is frequently reported in terms of chemical parameters without a proper evaluation of the effluent's toxicity mitigation. This is the first study reporting an exhaustive evaluation of the toxicity of a secondary bleached kraft pulp mill effluent, after either tertiary treatment with the soft-rot fungi Rhizopus oryzae or with a photo-Fenton oxidation, using a battery of freshwater species. As it has been reported the photo-Fenton/UV treatment has proved to be the most effective in reducing the colour and the COD (chemical oxygen demand) of the effluent. Nevertheless, extremely low EC50 values were reported for almost all species, after this tertiary treatment. The treatment with R. oryzae was less effective in terms of colour removal and COD reduction, but proved to be the most promising in reducing toxicity.  相似文献   

15.
Katsoyiannis A  Samara C 《Water research》2004,38(11):2685-2698
The occurrence and the removal of persistent organic pollutants (POPs) during the conventional activated sludge treatment process were investigated in the wastewater treatment plant of the city of Thessaloniki, northern Greece. POPs of interest were seven polychlorinated biphenyls (PCBs) and 19 organochlorine pesticides. Target compounds were determined at six different points across the treatment system. Most abundant compounds in raw wastewater at all treatment stages were PCB-52, PCB-110, PCB-180 and Heptachlor-exo-epoxide. Quintozene occurred frequently but in relatively low concentrations. Hexachlorocyclohexanes, DDT and its metabolites (DDE, DDD) and Aldrin, Dieldrin, Endrin, Isodrin ("Drins") were found at medium or low frequencies and in concentrations close to their detection limits. Removal percentages throughout the whole treatment process ranged from 65% to 91% for individual POP species. Significant linear relationship was observed between removal efficiency and log Kow for PCBs suggesting that compounds with a strong hydrophobic character are principally removed through sorption to sludge particles and transfer to the sludge processing systems. Total PCBs' concentrations in sewage sludge ranged between 185 and 765 ng g(-1) dw being below the EU limit for use of sludge in agriculture.  相似文献   

16.
The biodegradation of selected non-adsorbing persistent polar pollutants (P(3)) during wastewater (WW) treatment was studied by comparing a lab-scale membrane bioreactor (MBR) running in parallel to activated sludge treatment (AST). The investigated P(3) are relevant representatives or metabolites from the compound classes: pesticides, pharmaceuticals, insect repellents, flame retardants and anionic surfactants. Analyses of all these P(3) at low ng L(-1) levels with sufficient standard deviations was performed in WW influents and effluents. Non-degradable micropollutants, such as EDTA and carbamazepine were not eliminated at all during WW treatment by any technique. However, the MBR showed significant better removals compared to AST for the investigated poorly biodegradable P(3), such as diclofenac, mecoprop and sulfophenylcarboxylates. An application of such an in terms of sludge retention time optimised MBR may lead to a reduction of these P(3) in the watercycle.  相似文献   

17.
Manganese removal at lower pH and sludge volume in settling ponds are some of the major issues affecting chemical treatment systems for mine drainage. First, Fe and Al existing in mine drainage coprecipitate with and/or adsorb Mn. Eight chemical treatment facilities were reviewed from literature and a pilot‐scale experiment was also conducted in the Daedeok mine in South Korea. The Mn/(Fe + Al) ratio revealed a positive linear relationship with the lowest pH at discharge, and regression lines were generated. This relationship may be used to predict the pH required to remove Mn considering coprecipitation/adsorption. Second, the ratios of the generation rate of sludge to the required settling volume at five semi‐active treatment facilities were evaluated from literature. This ratio is referred to as the sludge‐settling volume ratio, which can be used as one of the factors in deciding between semi‐active and active treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号