首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
为解决水轮机主轴的密封问题,引入了磁流体作为密封材料,通过实验分析了水环境下影响磁流体密封承压能力的几种因素.结果表明:磁化强度越高,磁流体密封承压能力越高,但过高的磁化强度会导致磁流体粘度过大,造成轴转动时阻力过大;磁流体密封的承压能力随着磁场强度的提高而增大,但当外加磁场强度超过磁极的饱和磁化强度时,承压能力下降;磁流体密封的承压能力随密封间隙、温度和转速增加而下降,随磁流体量的增加和磁极级数的增多而增大,但当磁流体量超过一定的临界值和级数超过五级后,磁流体密封的承压能力保持在某一恒定值.  相似文献   

2.
研制了一种用于船舶艉轴磁流体密封的试验装置,研究了不同的磁饱和强度、转速及密封间隙对不同类型的磁流体密封承压能力的影响.结果表明,油基磁性流体可作为船舶艉轴密封液,对水和海水介质密封压差可以达到2MPa;船舶艉轴磁流体密封的耐压能力,随着磁流体饱和磁化强度的提高而增大,随着转轴转速的增加而减小,随着径向间隙的减小而增大.  相似文献   

3.
为提高耐蚀水泵磁流体旋转密封的承压值,在Fe3O4油基磁流体中添加适量强磁性Co微米粒子,并研究磁流体中Co粒子体积分数对磁流体密封水性能和磁流体密封装置温升的影响。研究结果表明,随着磁流体中Co粒子体积分数增加,因Co粒子在密封间隙内密封极齿表面聚积形成的“柔性磁极”,导致密封间隙减小,磁流体密封承压值明显增大;随着磁流体中Co粒子体积分数的增加,磁流体密封的功耗将增大,磁流体密封装置的温度升高;磁流体密封装置的温升缘于密封间隙内Co粒子之间和Co粒子与旋转轴之间内摩擦所产生的摩擦热。  相似文献   

4.
磁流体密封水的有关规律研究   总被引:3,自引:2,他引:3  
本文研究了磁流体密封水的有关规律,找出了密封间隙、温度、旋转轴的转速和磁流体的饱和磁化强度与承压能力的关系。  相似文献   

5.
为探讨磁流体密封极齿参数对磁流体热特性的影响,利用传热学理论构建磁流体密封装置的传热计算模型,研究不同转速下密封间隙、极齿宽度、极齿槽宽度和极齿高度与磁流体温度的关系。在磁流体密封实验台上研究密封间隙、极齿宽度、极齿槽宽度和极齿高度对磁流体温度的影响,并利用模型计算结果对试验结果进行了验证。试验结果表明:随着密封间隙和极齿高度的增加,磁流体温度逐渐减小,呈负指数变化趋势;随着极齿宽度的增加,磁流体温度线性增加;随着极齿槽宽度的增加,磁流体的温度基本不变;密封间隙对磁流体温度影响最大,其次是极齿宽度和极齿高度,极齿槽宽度对磁流体温度基本没有影响。研究表明,在一定范围内适当增加密封间隙和极齿高度,适当减小极齿宽度,可以在一定程度上减小磁流体的发热量,提高磁流体密封装置寿命。  相似文献   

6.
水轮机主轴磁流体密封装置间隙流场因工况和物理场的复杂性一直是磁流体密封研究难点。为研究水轮机主轴磁流体密封装置间隙内磁流体流动特性,建立主轴密封间隙流场数值模型并通过试验进行了验证;通过数值计算研究密封间隙、极齿宽度、极齿高度和极齿槽宽度对磁流体流动的影响。结果表明:极齿附近磁流体不受结构参数影响,基本保持不动;当密封间隙小于0.6 mm时,间隙内磁流体基本不发生流动,当密封间隙超过该值后,极齿槽和永磁体附近磁流体随间隙增加流动加剧,速度线性递增;极齿槽和永磁体附近磁流体随极齿宽度递增流动减弱,速度先线性递减,在3.0~3.5 mm极齿宽度时急剧减小,最后趋于稳定;随着极齿高度和极齿槽宽度逐渐增加,极齿槽和永磁体附近磁流体流动会减弱,极齿槽附近磁流体速度在极齿高度为1.0~3.5 mm和极齿槽宽为3.0~12 mm速度急剧减小,最后趋于稳定,而永磁体附近磁流体速度一直呈线性递减。  相似文献   

7.
高温会降低磁流体饱和磁化强度,造成永磁铁退磁,影响磁流体密封装置的可靠性及稳定性。为探讨磁流体密封装置传热特性,以大轴径离心压缩机磁流体密封为研究对象,同时考虑磁流体摩擦热和轴承摩擦热对磁流体密封装置传热特性的影响,利用有限元数值计算与磁流体、轴承摩擦功耗理论分析相结合的方法,研究磁流体密封装置温度分布规律,分析齿宽、密封间隙和转速对永磁铁和磁流体最高稳态温度的影响,并确定相关工况所需冷却液质量流率。结果表明:由于轴径尺寸较大,表面线速度高,磁流体黏性摩擦热及轴承摩擦热对密封装置传热特性有显著影响,在无冷却工况下,密封装置最高温度超过磁流体和永磁铁的极限使用温度,需通过强制对流换热的方式进行降温处理;永磁铁及磁流体最高稳态温度随着齿宽增加而升高,随着密封间隙增加而减小;随着转速的增加,永磁铁及磁流体最高稳态温度升高,且转速越大,相同转速梯度差之间的温度差越大。  相似文献   

8.
通过对一种磁流体密封装置静止和动态承压能力的研究,分析了这种结构动态密封承压能力明显比静止密封低以及密封承压能力随转速变化的原因.并根据这些原因.提出了一些相关的改进措施.以提高磁流体密封的效果。  相似文献   

9.
针对现有磁流体密封承压能力有限加工装配难度大、精度要求高等缺点,提出一种柔性极靴磁流体密封。利用ANSYS有限元软件,建立柔性极靴磁流体密封的数值模型,分析其磁场分布规律和承压能力,并与传统磁流体密封进行比较。运用正交试验方法研究柔性极靴的厚度、长度和相对磁导率、以及涂层厚度、软铁厚度等参数对密封性能的影响并进行优化。结果表明:柔性极靴磁流体密封相对于传统磁流体密封具更好的密封能力;柔性极靴的相对磁导率对密封承压能力的影响最大,其次是柔性极靴的厚度、软铁的厚度和柔性极靴的长度,涂层厚度对密封能力影响最小。优化后的柔性极靴磁流体密封的密封性能较传统磁流体密封提高50%以上。  相似文献   

10.
为提供磁流体密封水的应用技术支持,研制了磁流体密封的试验装置,提出了新的试验方法来验证和解释理论分析和推导的正确性。试验中采用不同的密封间隙,以确定磁流体密封能力与密封间隙之间的关系。试验结果表明,磁流体的密封能力随密封级数的增加而提高;在一定范围内随密封间隙的增大而减小;密封间隙在0.05-0.20 mm时,效果较好,同时密封级数有一个最佳值;但是在特别小的时候,与所有文献报道不同的是密封能力不是提高而是在减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号