首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
介绍了唐钢热轧部转炉双渣留渣的生产实践情况,讨论了脱磷阶段吹炼氧压、一倒温度、炉渣碱度、炉渣氧化铁含量以及倒渣时机对脱磷率的影响规律。研究表明,通过对倒渣时的炉渣物性进行控制,实现了降低辅料和钢铁料消耗的目的。  相似文献   

2.
大型转炉炼钢脱磷的研究   总被引:10,自引:4,他引:6  
利用副枪在吹炼过程取样测温的方法研究了大型转炉炼钢脱磷情况。适当控制炉渣的氧化铁和碱度可使吹炼终磷含量达到预定值。计算了吹炼终点渣-钢反应的平衡值,给出了终点钢水磷含量与影响脱磷反应工艺参数之间的回归方程。  相似文献   

3.
《特殊钢》2017,(1)
4.28%~5.02%C,0.19%~0.24%V铁水经提钒后的半钢成分为3.30%~3.80%C,≤0.037%V。"留渣+双渣"法为留上一炉渣,兑入提钒半钢和50~70 kg/t废钢加入石灰和白云石进行吹炼5~6 min,倒渣,并加入适量石灰和白云石继续吹炼至终点。结果表明,吹炼前期随着炉渣碱度或温度的增加,钢水脱磷率先增加后降低,而随着渣中(FeO)增加脱磷率先增加后稳定,前期最佳控制条件为炉渣碱度3.0~3.5,(FeO)10.0%~15.0%,倒渣温度1 480~1 510℃;转炉吹炼后期,随着炉渣碱度的增加脱磷率升高,而随着温度的增加脱磷率降低,(FeO)对脱磷率的影响与前期较为相近,转炉吹炼终点控制碱度3.5~4.0,(FeO)8.0%~10.0%,温度≤1630℃为宜,脱磷率在90.0%以上;此工艺可将钢水终点[P]控制在0.015%以内,满足低磷钢冶炼的需求。  相似文献   

4.
为了解转炉单渣,双渣一留渣和喷石灰粉炼钢方法在吹炼不同含磷量铁水时的工艺特点,在吹炼过程中用副枪进行取样、测温,并记录关键的吹炼参数。单渣法和双渣一留渣法吹炼普通含磷铁水时,通过控制吹炼前期的炉渣碱度、氧化铁和熔池温度使吹炼前期铁水与炉渣磷的平衡值[P]_e低于0.0068%,实际含磷量与平衡值之比[P]_r/[P]_e低于4.6。顶吹搅拌能达到25000W/m~3,L/L_θ=0.54-0.56。底吹气体流量0.08~-0.10cm~3/min。可使吹炼前期脱磷率达到60%以上。顶吹高磷铁水(P=1.7%)前期脱磷率可达93.8%,[P]_e=0.056%,[P]_r/[P]_e=2.24,这种方法具有化渣快,供氧强度高的特点,吹炼高磷铁水时有良好的效果。双渣法吹炼中磷铁水(P=0.9~-1.2%)前期脱磷效果不好,用这种方法炼钢材料消耗高,生产率低。  相似文献   

5.
张润灏  杨健  叶格凡  孙晗  杨文魁 《炼钢》2022,38(1):1-13
转炉脱磷工艺利用了转炉容积大的特点,可以实现转炉前期快速高效低碱度脱磷.脱碳渣的循环利用降低了石灰等辅料消耗和渣量.在低温低碱度转炉脱磷的条件下,低温在热力学上有利于脱磷,但温度过低会使渣过于粘稠而影响动力学条件并使倒渣困难;适当提高碱度,脱磷效果较好.随着渣中氧化铁含量的上升,脱磷效果先上升后下降.转炉脱磷渣中固液两...  相似文献   

6.
用CaO-CaF2-FeO系渣进行钢水深脱磷   总被引:5,自引:0,他引:5  
为了生产超低磷钢,在1600℃用高碱度CaO-CaF2-FeO系渣对低磷钢水进行了炉外深脱磷的研究。分析了氧化性和碱度对脱磷效果的影响,确定了合适的渣系组成,测得1600℃下该渣系的磷容量在10^18.54~10^20.2范围内。实验结果表明:氧化性和碱度是影响脱磷效果的两个制约性因素;在钢水初始磷含量为0.01%左右的条件下,使用该渣获得了大于50%的脱磷率及低于0.005%(最低可达0.0027%)的磷含量;在300t转炉上进行的初步生产试验也获得了50%左右的脱磷率及0.006%左右的成品磷含量。  相似文献   

7.
吴伟  戴诗凡 《中国冶金》2016,26(5):52-56
在实验室条件下对石灰石和石灰块在转炉初期渣的溶解状况进行研究。结果表明,在1550℃,加入石灰块与部分初期渣反应,仍为固相,没有形成液相;加入的石灰石块已完全溶解在转炉初期渣中,形成均质的液态渣。在工业试验中,分别在转炉前期和中后期加入石灰石考察其熔化状况及脱磷效果,结果显示,吹炼前期加入石灰石的炉次,吹炼前期形成的炉渣碱度较低,约为1.5左右,吹炼终点炉渣碱度才达到预期的指标,脱磷效果前期不佳,中后期才有所提高;中后期加入石灰石的炉次,吹炼过程能够保持较高的炉渣碱度,有利于保持稳定的脱磷效果。  相似文献   

8.
济钢炼钢厂通过优化复吹转炉双渣工艺、控制适当的底吹强度及终点(终渣氧化铁18%~24%、碱度3.5~4.5、温度1600~1620℃),提高转炉前期脱磷效果,采取合理的出钢制度,在无铁水脱磷设备条件下,生产了钢材P含量在0.007%以下的超低磷钢,满足钢种对钢质洁净度的特殊要求。  相似文献   

9.
采用热力学计算和工艺试验的方法,对转炉双渣法冶炼DC04钢的脱磷工艺进行了研究,结果表明:运用转炉双渣法脱磷前期的最佳温度为1 320~1 355℃,前期碱度应控制为1.4~1.8,倒前期渣的时机应控制在吹炼后3~4min比较适宜;双渣法冶炼使钢液中锰的收得率降低,在30%以下;双渣法脱磷前渣中TFe较低,但是后期中渣中TFe的含量变化较小;双渣法冶炼过程控制平稳,能有效降低出钢终点磷含量。  相似文献   

10.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

11.
基于转炉出钢过程回磷机理分析与控制措施,通过现场取样、数据采集、模拟试验及利用FactSage软件分析了转炉冶炼过程脱磷机理,研究探讨了渣中FeO含量、TiO2含量、SiO2含量、终点温度、熔渣碱度、底吹搅拌对脱磷的影响.研究结果表明,结合首钢水城钢铁集团公司生产实践,控制终点温度在1630~1645℃、终渣FeO质量...  相似文献   

12.
RH oxygen top- blowing for raising temperature should be avoided to improve the cleaniness of IF steel as far as possible, which made the end point temperature of converter higher and then dephosphorization in converter became difficult. Thermodynamics and dynamics of dephosphorization process in converter were calculated to study the relationship of phosphate partition ratio to compositions of molten steel, slag, temperature in molten steel based on slag- remaining and double slag process. Through changing the first deslagging time and the composition of slag,then serial sampling from molten steel and slag in industrial production experiments, the behavior of phosphorus in molten steel was studied and then the main measures obtaining higher phosphate partition ratio in slag- remaining and double slag process are: small- sized scrap or thin steel sheet should be used to increase FeO content in slag and prevent molten steel temperature increase when oxygen blowing in converter begins. Slag with high phosphorus content should be poured when amount of oxygen blowing reachs 40% of the total; FeO content in slag should be increased to assure the mobility of slag and then reduce rephosphorization from slag to steel when amount of oxygen blowing is greater than 40% and less than 80% of the toal; the end- point slag with 4. 0 basicity and 18 mass%-20 mass% FeO content and molten steel temperature should be controlled.  相似文献   

13.
通过实验室管式高温炉蘸渣试验和理论计算,研究了转炉冶炼低碳低磷钢的终渣(FeO)含量、(MgO)含量和碱度对炉渣物化性能和溅渣护炉炉衬保护的影响.试验优化前,终炉渣(FeO)质量分数为31.5%,(MgO)质量分数为8%,通过调整炉渣碱度,炉渣的固相率依然接近0%,炉渣溅渣后难以残留在炉壁上,不能对炉衬起到保护的效果....  相似文献   

14.
利用FactSage软件绘制了渣系CaO- SiO2- FeO- MgO(10%)- MnO(7%)的等硫分配比图,分析了FeO/SiO2比、FeO质量分数和碱度对硫分配比的影响。分析结果表明:当CaO质量分数一定时,渣钢间的硫分配比随着FeO/SiO2比的增加而逐渐增加。在转炉炼钢碱度范围内,当FeO质量分数一定时,Ls随碱度的增加而增加;当碱度一定时,在低碱度范围内,硫分配比随着FeO质量分数的增加而增加,在高碱度范围内,硫分配比随着FeO质量分数的增加而减少。  相似文献   

15.
赵东伟  李海波  孙亮  张勇 《钢铁》2016,51(8):24-28
 基于CaO-SiO2-FeO-10%MgO渣系,从热力学角度对渣钢界面的脱磷行为进行分析,归纳出磷分配比与钢液温度、碳质量分数以及炉渣成分间的表达式,并在此基础上绘制出了CaO-SiO2-FeO-10%MgO渣系的等磷分配比线,同时分析了转炉终渣氧化性、碱度以及温度对磷分配比的影响情况。研究结果表明,转炉吹炼过程磷分配比是钢液温度、碳质量分数和炉渣成分的函数,通过与实际生产数据进行验证,发现其与实际结果吻合良好。基于该预测公式,在其他条件不变情况下,随着炉渣FeO质量分数增加,磷分配比[LP]先增加后减小,当终渣FeO质量分数为18%左右时达到最大值;随着终渣碱度的增加,渣钢间磷分配比增加,当终渣超过4.0时,磷分配比增加不再明显。  相似文献   

16.
针对转炉冶炼低硅低温铁水终点磷含量偏高的现象,从冶炼中期炉渣FeO含量、炉渣碱度及倒炉温度等几方面因素对脱磷分配比的影响进行了分析。通过改善化渣条件和成渣途径等相应措施,降低了冶炼终点钢水中的磷含量,提高了钢水的质量。  相似文献   

17.
通过脱磷与还原磷的平衡热力学研究,确定了120 t转炉双渣法冶炼低磷钢时最佳一次倒渣温度与碱度之间的关系。通过对磷分配比Lp计算,得到了1 450℃下,碱度、(FeO)对其影响。结合热力学软件Factsage,得到最佳的脱磷渣碱度和(FeO)。计算表明,随着炉渣碱度的增大,最佳脱磷温度区间向高温区移动;1 450℃下,最佳的第一次倒渣碱度为2,最佳(FeO)为20%~25%。  相似文献   

18.
通过对100 t顶吹转炉双渣法深脱磷的工业性试验研究,结合不同吹炼时期冶炼特点,确立了吹炼过程需要控制的原料及操作制度等关键措施。控制倒炉温度、碱度、炉渣中的ω(FeO)及熔渣流动性等因素均是取得良好脱磷效果的重要保证。应用双渣法深脱磷生产试验取得了转炉出钢磷含量平均达到63×10-6,成品平均磷含量达到85×10-6的实绩。  相似文献   

19.
120 t转炉熔池中硫行为的研究   总被引:1,自引:1,他引:0  
周俐  刘国平  丁长江  吴发达  梅忠 《钢铁》2007,42(10):29-31,35
取样测定了120 t转炉在冶炼过程中熔池中硫的变化情况,通过物料平衡计算研究了熔池中硫的来源,并研究了终点温度、炉渣碱度、渣中(FeO)对硫在渣钢间分配比的影响.结果表明,提高终点温度和炉渣碱度有利于硫分配比的提高,在一定范围内提高渣中(FeO)含量有利于硫分配比的提高,w(FeO)≥18%时,随着(FeO)含量的提高硫分配比减小;减少入炉硫负荷是冶炼低硫钢的基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号