首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trefftz method is the boundary-type solution procedure using regular T-complete functions satisfying the governing equation. Until now, it has been mainly applied to numerical analyses of the problems governed with the homogeneous differential equations such as the two- and three-dimensional Laplace problems and the two-dimensional elastic problem without body forces. On the other hand, this paper describes the application of the indirect Trefftz method to the solution of the boundary value problems of the two-dimensional Poisson equation. Since the Poisson equation has an inhomogeneous term, it is generally difficult to determine the T-complete function satisfying the governing equation. In this paper, the inhomogeneous term containing an unknown function is approximated by a polynomial in the Cartesian coordinates to determine the particular solutions related to the inhomogeneous term. Then, the boundary value problem of the Poisson equation is transformed to that of the Laplace equation by using the particular solution. Once the boundary value problem of the Poisson equation is solved according to the ordinary Trefftz formulation, the solution of the boundary value problem of the Poisson equation is estimated from the solution of the Laplace equation and the particular solution. The unknown parameters included in the particular solution are determined by the iterative process. The present scheme is applied to some examples in order to examine the numerical properties.  相似文献   

2.
This paper presents the particular solutions for the polyharmonic and the products of Helmholtz partial differential operators with polyharmonic splines and monomials right-hand side. By the application of the Hörmander linear partial differential operator theory, many of the systems can be reduced to a single equation involving the polyharmonic or the product of Helmholtz differential operators. If the inhomogeneous right-hand side of these operators can be removed by the method of particular solutions, then boundary-type numerical methods, such as the boundary element method, the method of fundamental solutions, and the Trefftz method, can be applied to solve these differential equations.  相似文献   

3.
In this paper, an efficient Kansa-type method of fundamental solutions (MFS-K) is extended to the solution of two-dimensional time fractional sub-diffusion equations. To solve initial boundary value problems for these equations, the time dependence is removed by time differencing, which converts the original problems into a sequence of boundary value problems for inhomogeneous Helmholtz-type equations. The solution of this type of elliptic boundary value problems can be approximated by fundamental solutions of the Helmholtz operator with different test frequencies. Numerical results are presented for several examples with regular and irregular geometries. The numerical verification shows that the proposed numerical scheme is accurate and computationally efficient for solving two-dimensional fractional sub-diffusion equations.  相似文献   

4.
This paper presents high-order Trefftz functions for some commonly used differential operators. These Trefftz functions are then used to construct boundary particle method for solving inhomogeneous problems with the boundary discretization only, i.e., no inner nodes and mesh are required in forming the final linear equation system. It should be mentioned that the presented Trefftz functions are nonsingular and avoids the singularity occurred in the fundamental solution and, in particular, have no problem-dependent parameter. Numerical experiments demonstrate the efficiency and accuracy of the present scheme in the solution of inhomogeneous problems.  相似文献   

5.
In this paper we numerically solve both the direct and the inverse Cauchy problems of biharmonic equation by using a multiple-scale Trefftz method (TM). The approximate solution is expressed to be a linear combination of T-complete bases, and the unknown coefficients are determined to satisfy the boundary conditions, by solving a resultant linear equations system. We introduce a better multiple-scale in the T-complete bases by using the concept of equilibrated norm of the coefficient matrix, such that the explicit formulas of these multiple scales can be derived. The condition number of the coefficient matrix can be significantly reduced upon using these better scales; hence, the present multiple-scale Trefftz method (MSTM) can effectively solve the inverse Cauchy problem without needing of the overspecified data, which is an incomplete Cauchy problem. Numerical examples reveal the efficiency that the new method can provide a highly accurate numerical solution even the problem domain might have a corner singularity, and the given boundary data are subjected to a large random noise.  相似文献   

6.
In this paper, we consider the solution of the axisymmetric heat equation with axisymmetric data in an axisymmetric domain in R3. To solve this problem, we remove the time-dependence by various transform or time-stepping methods. This converts the problem to one of a sequence of modified inhomogeneous Helmholtz equations. Generalizing previous work, we consider solving these equations by boundary-type methods. In order to do this, one needs to subtract off a particular solution, so that one obtains a sequence of modified homogeneous Helmholtz equations. We do this by modifying the usual Dual Reciprocity Method (DRM) and approximating the right-hand sides by Fourier-polynomials or bivariate polynomials. This inevitably leads to analytical solving a sequence of ordinary differential equations (ODEs.) The analytic formulas and their precision are checked using mathematica. In fact, by using an infinite precision technique, the particular solutions can be obtained with infinite precision themselves. This work will form the basis for numerical algorithms for solving axisymmetric heat equation.  相似文献   

7.
For Laplace's eigenvalue problems, this paper presents new algorithms of the Trefftz method (i.e. the boundary approximation method), which solve the Helmholtz equation and then use an iteration process to yield approximate eigenvalues and eigenfunctions. The new iterative method has superlinear convergence rates and gives a better performance in numerical testing, compared with the other popular methods of rootfinding. Moreover, piecewise particular solutions are used for a basic model of eigenvalue problems on the unit square with the Dirichlet condition. Numerical experiments are also conducted for the eigenvalue problems with singularities. Our new algorithms using piecewise particular solutions are well suited to seek very accurate solutions of eigenvalue problems, in particular those with multiple singularities, interfaces and those on unbounded domains. Using piecewise particular solutions has also the advantage to solve complicated problems because uniform particular solutions may not always exist for the entire solution domain.  相似文献   

8.
A new dual reciprocity‐type approach to approximating the solution of non‐homogeneous hyperbolic boundary value problems is presented in this paper. Typical variants of the dual reciprocity method obtain approximate particular solutions of boundary value problems in two steps. In the first step, the source function is approximated, typically using radial basis, trigonometric or polynomial functions. In the second step, the particular solution is obtained by analytically solving the non‐homogeneous equation having the approximation of the source function as the non‐homogeneous term. However, the particular solution trial functions obtained in this way typically have complicated expressions and, in the case of hyperbolic problems, points of singularity. Conversely, the method presented here uses the same trial functions for both source function and particular solution approximations. These functions have simple expressions and need not be singular, unless a singular particular solution is physically justified. The approximation is shown to be highly convergent and robust to mesh distortion. Any boundary method can be used to approximate the complementary solution of the boundary value problem, once its particular solution is known. The option here is to use hybrid‐Trefftz finite elements for this purpose. This option secures a domain integral‐free formulation and endorses the use of super‐sized finite elements as the (hierarchical) Trefftz bases contain relevant physical information on the modeled problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The Poisson equation can be solved by first finding a particular solution and then solving the resulting Laplace equation. In this paper, a computational procedure based on the Trefftz method is developed to solve the Poisson equation for two‐dimensional domains. The radial basis function approach is used to find an approximate particular solution for the Poisson equation. Then, two kinds of Trefftz methods, the T‐Trefftz method and F‐Trefftz method, are adopted to solve the resulting Laplace equation. In order to deal with the possible ill‐posed behaviors existing in the Trefftz methods, the truncated singular value decomposition method and L‐curve concept are both employed. The Poisson equation of the type, ?2 u = f(x, u), in which x is the position and u is the dependent variable, is solved by the iterative procedure. Numerical examples are provided to show the validity of the proposed numerical methods and some interesting phenomena are carefully discussed while solving the Helmholtz equation as a Poisson equation. It is concluded that the F‐Trefftz method can deal with a multiply connected domain with genus p(p > 1) while the T‐Trefftz method can only deal with a multiply connected domain with genus 1 if the domain partition technique is not adopted.  相似文献   

10.
A new indirect approach to the problem of approximating the particular solution of non‐homogeneous hyperbolic boundary value problems is presented. Unlike the dual reciprocity method, which constructs approximate particular solutions using radial basis functions, polynomials or trigonometric functions, the method reported here uses the homogeneous solutions of the problem obtained by discarding all time‐derivative terms from the governing equation. Nevertheless, what typifies the present approach from a conceptual standpoint is the option of not using these trial functions exclusively for the approximation of the particular solution but to fully integrate them with the (Trefftz‐compliant) homogeneous solution basis. The particular solution trial basis is capable of significantly improving the Trefftz solution even when the original equation is genuinely homogeneous, an advantage that is lost if the basis is used exclusively for the recovery of the source terms. Similarly, a sufficiently refined Trefftz‐compliant basis is able to compensate for possible weaknesses of the particular solution approximation. The method is implemented using the displacement model of the hybrid‐Trefftz finite element method. The functions used in the particular solution basis reduce most terms of the matrix of coefficients to boundary integral expressions and preserve the Hermitian, sparse and localized structure of the solving system that typifies hybrid‐Trefftz formulations. Even when domain integrals are present, they are generally easy to handle, because the integrand presents no singularity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The Laplace transform is applied to remove the time-dependent variable in the diffusion equation. For non-harmonic initial conditions this gives rise to a non-homogeneous modified Helmholtz equation which we solve by the method of fundamental solutions. To do this a particular solution must be obtained which we find through a method suggested by Atkinson. To avoid costly Gaussian quadratures, we approximate the particular solution using quasi-Monte-Carlo integration which has the advantage of ignoring the singularity in the integrand. The approximate transformed solution is then inverted numerically using Stehfest's algorithm. Two numerical examples are given to illustrate the simplicity and effectiveness of our approach to solving diffusion equations in 2-D and 3-D. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we show how to obtain analytic particular solutions for inhomogeneous Helmholtz-type equations in 3D when the source terms are compactly supported radial basis functions (CS-RBFs) (J. Approx. Theory, 93 (1998) 258). Using these particular solutions we demonstrate the solvability of boundary value problems for the inhomogeneous Helmholtz-type equation by approximating the source term by CS-RBFs and solving the resulting homogeneous equation by the method of fundamental solutions. The proposed technique is a truly mesh-free method and is especially attractive for large-scale industrial problems. A numerical example is given which illustrates the efficiency of the proposed method.  相似文献   

13.
The present paper proposes a new modification of the direct Trefftz method by taking the characteristic length of the problem domain into account, whose inclusion into the T-complete bases ensures that the modified direct Trefftz method is stable, because the condition number of the resulting linear equations system can be greatly reduced over 12 orders. Then, the boundary element method and the Fourier series method are used to derive the linear equations system to determine the unknown coefficients, which can be employed to solve the mixed-boundary value 2D potential problems. We use numerical examples to explore why the conventional direct Trefftz method is unstable and the modified one is stable and workable. The direct Trefftz method is applicable to the case where the problem size is smaller or with its maximum length near to 1 and using suitable elements number or bases number. Under this condition, the modified method still has a great advantage to improve the accuracy up to two or three orders.  相似文献   

14.
Four methods that solve the Poisson, Helmholtz, and diffusion–convection problems on Cartesian grid by collocation with radial basis functions are presented. Each problem is split into a problem with an inhomogeneous equation and homogeneous boundary conditions, and a problem with a homogeneous equation and inhomogeneous boundary conditions. The former problem is solved by collocation with multiquadrics, whereas the latter problem is solved by collocation with either multiquadrics or fundamental solutions. It is found that methods that make use of fundamental solutions for collocation yield more accurate solutions that are less sensitive to the shape parameter of multiquadrics and node arrangement. Additional collocation appears to improve the quality of solutions.  相似文献   

15.
By coupling the moving least squares (MLS) approximation with a modified functional, the hybrid boundary node-method (hybrid BNM) is a boundary-only, truly meshless method. Like boundary element method (BEM), an initial restriction of the present method is that non-homogeneous terms accounting for effects such as distributed loads are included in the formulation by means of domain integrals, and thus make the technique lose the attraction of its ‘boundary-only’ character.This paper presents a new boundary-type meshless method dual reciprocity-hybrid boundary node method (DR-HBNM), which is combined the hybrid BNM with the dual reciprocity method (DRM) for solving Helmholtz problems. In this method, the solution of Helmholtz problem is divided into two parts, i.e. the complementary solution and the particular solution. The complementary solution is solved by means of hybrid BNM and the particular one is obtained by DRM. The modified variational formulation is applied to form the discrete equations of hybrid BNM. The MLS is employed to approximate the boundary variables, while the domain variables are interpolated by fundamental solutions. The domain integration is interpolated by radial basis function (RBF). The proposed method in the paper retains the characteristics of the meshless method and BEM, which only requires discrete nodes constructed on the boundary of a domain, several nodes in the domain are needed just for the RBF interpolation. The parameters that influence the performance of this method are studied through numerical examples and known analytical fields. Numerical results for the solution of Helmholtz equation show that high convergence rates and high accuracy are achievable.  相似文献   

16.
In this study, the homotopy analysis method (HAM) is combined with the method of fundamental solutions (MFS) and the augmented polyharmonic spline (APS) to solve certain nonlinear partial differential equations (PDE). The method of fundamental solutions with high-order augmented polyharmonic spline (MFS–APS) is a very accurate meshless numerical method which is capable of solving inhomogeneous PDEs if the fundamental solution and the analytical particular solutions of the APS associated with the considered operator are known. In the solution procedure, the HAM is applied to convert the considered nonlinear PDEs into a hierarchy of linear inhomogeneous PDEs, which can be sequentially solved by the MFS–APS. In order to solve strongly nonlinear problems, two auxiliary parameters are introduced to ensure the convergence of the HAM. Therefore, the homotopy method of fundamental solutions can be applied to solve problems of strongly nonlinear PDEs, including even those whose governing equation and boundary conditions do not contain any linear terms. Therefore, it can greatly enlarge the application areas of the MFS. Several numerical experiments were carried out to validate the proposed method.  相似文献   

17.
This paper describes the application of the Trefftz method to the solution of three-dimensional Poisson equation. An inhomogeneous term containing the unknown function is approximated with a polynomial function in the Cartesian coordinates to determine the particular solution for the Poisson equation. The solution of the problem is approximated with the superposition of the Trefftz functions of the Laplace equation and the derived particular solution. Unknown parameters included in the approximate solution are determined so that the solution satisfies the boundary conditions. The present scheme is applied to some examples in order to study the numerical properties.  相似文献   

18.
Trefftz methods for the numerical solution of partial differential equations (PDEs) on a given domain involve trial functions which are defined in subdomains, are generally discontinuous, and are solutions of the governing PDE (or its adjoint) within each subdomain. The boundary conditions and matching conditions between subdomains must be enforced separately. An interesting novel result presented in this paper is that the least-squares method (LSM) and the ultraweak variational formulation, two methods already established for solving the Helmholtz equation, can be derived in the framework of the Trefftz-type methods. In the first case, the boundary conditions and interelement continuity are enforced by means of a least-squares procedure. In the second, a Galerkin-type weighted residual method is used. Another goal of the work is to assess the relative efficiency of each method for solving shortwave problems in acoustics and to study the stability of each method. The numerical performance of each scheme is assessed with reference to two 2-D test problems; acoustic propagation in an uniform soft-walled duct, and propagation in an L-shaped domain, the latter involving singular behaviour at a sharp corner. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper differential quadrature Trefftz method (DQTM), a new meshless method based on coupling the dual reciprocity method (DRM) with the differential quadrature method (DQM) and the Trefftz method, is used to analyze Poisson-type interior and exterior problems. In this method, the DRM is used to construct equivalent equations to the original differential equation. Then the DQM is employed to approximate the particular solutions, while Trefftz method leads to a boundary-only formulation for homogeneous solution. As a result, an inherently meshless, integration-free, boundary-only DQ Trefftz collocation technique is developed for solving Poisson-type problems. Due to the flexibility in choosing points on boundaries, the new method also works well on irregular domains. Numerical results show that the present method works efficiently with quite few points on both uniform and irregular domains.  相似文献   

20.
A two‐stage numerical procedure using Chebyshev polynomials and trigonometric functions is proposed to approximate the source term of a given partial differential equation. The purpose of such numerical schemes is crucial for the evaluation of particular solutions of a large class of partial differential equations. Our proposed scheme provides a highly efficient and accurate approximation of multivariate functions and particular solution of certain partial differential equations simultaneously. Numerical results on the approximation of eight two‐dimensional test functions and their derivatives are given. To demonstrate that the scheme for the approximation of functions can be easily extended to evaluate the particular solution of certain partial differential equations, we solve a modified Helmholtz equation. Near machine precision can be achieved for all these test problems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号