首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compositions of anion-deficient zirconia and thoria in equilibrium with O2 were measured from 1 to 10−6 atm and 1400° to 1900°C; for ZrO2- x (po2 in atm, and T in °K), log x∼−0.890-[(0.400×104)/ T ]-[(log p )/6]; for ThO2- x , log x∼−1.870-[(0.340×104)/ T ]-[(log p )/6]. The ZrO2- x -Zr boundary was located at x=0.014 at 1800°C; thoria was single-phase over the entire range. Consistent results were obtained when O2/inert gas mixtures were used, but use of H2/H2O and CO/CO2 at 1000° to 1200°C gave abnormal and, in the latter case, erratic data; side reactions in these atmospheres are inferred. The monoclinic-tetragonal phase change of ZrO2 and the lattice thermal expansion, room-temperature Young's modulus, and strength properties of ZrO2 and ThO2 bodies were not appreciably altered by oxygen deficiency. The lattice dimensions decreased slightly with departure from stoichiometry.  相似文献   

2.
The electrical conductivity and ion/electron transference numbers in Al3O3 were determined in a sample configuration designed to eliminate influences of surface and gas-phase conduction on the bulk behavior. With decreasing O2 partial pressure over single-crystal Al2O3 at 1000° to 1650°C, the conductivity decreased, then remained constant, and finally increased when strongly reducing atmospheres were attained. The intermediate flat region became dominant at the lower temperatures. The emf measurements showed predominantly ionic conduction in the flat region; the electronic conduction state is exhibited in the branches of both ends. In pure O2 (1 atm) the conductivity above 1400°C was σ≃3×103 exp (–80 kcal/ RT ) Ω−1 cm−1, which corresponds to electronic conductivity. Below 1400°C, the activation energy was <57 kcal, corresponding to an extrinsic ionic condition. Polycrystalline samples of both undoped hot-pressed Al2O3 and MgO-doped Al2O3 showed significantly higher conductivity because of additional electronic conduction in the grain boundaries. The gas-phase conduction above 1200°C increased drastically with decreasing O2 partial pressure (below 10−10 atm).  相似文献   

3.
The electrical conductivity of nearly stoichiometric single-crystal and polycrystalline uranium dioxide was measured from room temperature to 3000°K. Below approximately 550°K, the curve of log σ versus T −1 is linear with a calculated activation energy of approximately 0.17 ev. Between 550° and 1250°K, however, the shape of the curve changes; this change varies from one specimen to another. The electrical conductivity increases rapidly with increasing temperature above 1250°K with a change from p -type to n -type conduction. The best linear fit of the log σ versus T −1 curve above 1400°K is σ= 3.57 × 103 e −(1.15 ev/KT). Above 1900°K, the curve deviates slightly from linearity and is best fit by the equation σ= 2.10 × 10−2 T 1.4 e −(0.916 ev/KT).  相似文献   

4.
The knowledge of the steady-state stress for plastic deformation as a function of temperature and strain rate is essential for hot-forming superconducting material into commercially useful shapes. In this paper, results are presented on the experimental determination of the rheology of fully dense polycrystalline Y1Ba2Cu3O7−x superconducting material at temperatures ranging from 750° to 950°C and strain rates of 10−4, 10−5, and 10−6 s−1. The data are best fitted by a power law: ε(s−1)=8.9 × 10−17. (s−1) σ2.5 (Pa) exp [−2.01 × 105(J·mol−1)|RT]. X-ray analysis shows that the superconducting material retains its phase composition after nearly 70% total strain of the sample. A strong anisotropy in the resistivity of the deformed samples is observed because of the development of a preferred orientation of the a or b axis of Y1Ba2Cu3O7−x orthorhombic perovskite single crystals perpendicular to the principal maximum compressive stress.  相似文献   

5.
The emf method was used to determine the lower limit of oxygen activity for essentially pure anionic conduction in Th0.85Y0.15O1.925 from 775° to 1000C. The results show that the oxygen transference number is ≥0.99 when log PO 2≥−6.5(104/ T °K)+29.  相似文献   

6.
The ac and dc conductivities of single-crystal and polycrystalline NaCl were measured as a function of both temperature and particle size. The ac conductivity results for single-crystal NaCl agreed well with the literature: intrinsic activation energy = 1.86 ev; extrinsic, impurity-controlled range = 0.74 ev; extrinsic, association range = 1.16 ev; and the intrinsic-extrinsic knee in the curve was at 103/ T ∼ 1.4°K−1 and σ0∼ 6 × 10−8 ohm−1 cm−1. In the intrinsic range, however, the total conductivity (σ0) was the sum of two ionic contributions: a steady state, nonblocked contribution (σθ and a blocked contribution (σ0—σθ). The activation energy for the dc steady state conductivity was 1.6 ev. When the extrinsic, impurity-controlled contribution to the total conductivity was made insignificant by anion doping, the same 1.6 ev was the activation energy for the intrinsic ac conductivity at low temperatures. The data for the polycrystalline samples showed that ac conductivity increased inversely with particle size and dc steady state conductivity increased only slightly, if any, with decreasing particle size. It is postulated that the steady state conductivity is the result of the nonblocked ionic transport of sodium ions and that the ac portion of the total conductivity is due to the movement of chlorine ions which are blocked, giving rise to the polarization phenomenon. The increase in the ac conductivity with decreasing particle size is correlated with the enhanced movement of Cl in the subgrain boundary region, as has been previously shown by diffusion measurements.  相似文献   

7.
The thermal conductivities of sintered pellets of ThO2-1.3 wt% U02 were measured at 60°C before and after irradiation. The irradiation temperature was below 156°C, and the exposures varied from 3.1 × 1014 to 4.7 × loL7 fissions/cm3. Each fission fragment damaged a region of 2.2 × 10-16 cm3 with the reduction in conductivity saturating by about 1017 fissions/cm3. Samples having exposures from 1015 to 1016 fissions/cm3 were annealed isothermally at 651 °C or isochronally from 300° to 1200° C to study the annealing of damage. Most of the annealing occurred between 500° and 900°C. The width of this interval plus the slow isothermal annealing suggest that the damage is annealed by a number of single order processes with a spectrum of activation energies from 1.8 to 3.9 eV or, less probably, by a high order process with an activation energy of 3.55 ± 0.4 eV.  相似文献   

8.
A series of oxide ion conductors Ce6− x Gd x MoO15−δ (0.0≤ x ≤1.8) have been prepared by the sol–gel method. Their properties were characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Raman, IR, X-ray photoelectron spectroscopy (XPS), and AC impedance spectroscopy. The XRD patterns showed that the materials were single phase with a cubic fluorite structure. The conductivity of Ce6− x Gd x MoO15−δ increases as x increases and reaches the maximum at x =0.15. The conductivity of Ce4.5Gd1.5MoO15−δ is σt=3.6 × 10−3 S/cm at 700°C, which is higher than that of Ce4.5/6Gd1.5/6O2−δt=2.6 × 10−3 S/cm), and the corresponding activation energy of Ce4.5Gd1.5MoO15−δ (0.92 eV) is lower than that of Ce4.5/6Gd1.5/6O2−δ (1.18 eV).  相似文献   

9.
Electrical conductivity, thermoelectric power, and weight change were measured for polycrystalline Ta2O5 from 900° to 1400°C. The predominant ionic and electronic defects in this temperature range are oxygen vacancies and electrons. The oxygen-vacancy and electron mobilities are 8.1 × 103exp (−1.8 eV/ k T) and ∼0.05 cm2/V-s, respectively. At O2 partial pressures near 1 atm, the ionic-defect concentration is essentially fixed by the presence of lower-valence cation impurities, and the total electrical conductivity is predominantly ionic, whereas at low P o2's the conductivity is electronic and proportional to P P o2−1/6.  相似文献   

10.
Samples of bulk polycrystalline ThO2 were bombarded with 5-MeV α-particles to doses between 9.4×1016 and 6.0×1017 ions/cm2. The sample which received the highest dose spalled during bombardment; those receiving lower doses either did not spall or did so only after postirradiation annealing. The spalling was investigated by X-ray analysis and replica and transmission electron microscopy. It is concluded that spalling resulted from severe lattice strains at the interface between damaged and undamaged material and that sintering pores played a part in the fracture process. The role of lattice defects in initiating fracture is discussed.  相似文献   

11.
An investigation of the properties of high-purity (>99 wt%) tantalum tungstates (Ta22W4O67, Ta, WO8, and Ta16W18O94) included determination of density (bulk and theoretical), refined lattice constants, maximum use temperatures, micro-hardness, heat capacity, thermal expansion (contraction) and diffusivity, calculated thermal conductivity, and electrical resistivity. Usable to ∼ 1700 K in air or inert atmospheres, these tantalum tungstates have theoretical densities of 7.3 to 8.5 g/cm3, are relatively soft (120 to 655 kg/mm2 hardnesses), and are electrical insulators (6× 103 to 2× 108Ω.cm resistivities). The distinguishing properties of the materials are their thermal expansion (average CTE values from + 0.6×10−8/K to −5.1× 10−6/K at 293 to 1273 K), thermal expansion hysteresis with minimal observable microcracking, and thermal diffusivity  相似文献   

12.
Solid solutions of general compositions (Mg1- xFex)O and (Mg1-xCox)O (0.05 ≤ x ≤ 0.25) were investigated with regard to the dependence of their specific electrical conductivity on the oxygen partial pressure (10−17≤ po2≤ 105 Pa) at 900c and 800°C. The experimental results, especially the slopes of plots of log σ vs log po2 and the stability of the solid solutions studied, indicate that some of these compositions could be used as oxygen sensors at high temperatures.  相似文献   

13.
The emf of the galvanic cell Pt|UMoO6UMoO5|ZrO2-Y2O3|O2(air, Po2=0.21 atm)|Pt, measured from 776 to 1127 K, was determined to be E = 751.7−0.4909 ±4.3 mV. Using the standard Gibbs energy of formation, fΔG°, for UMoO6 reported in the literature from transpiration studies, the fΔG° for UMoO5 is calculated to be fΔG°〈UMoO5〉=−1816.9+0.3748T±6.0 U-mol−1 The magnitudes of the standard entropies of formation, fΔS°, for UMoO6 and UMoO5 were evaluated from those values reported for the binary oxides which constitute the ternary compounds.  相似文献   

14.
Crystals of β-Ca2SiO4 (space group P 121/ n 1) were examined by high-temperature powder X-ray diffractometry to determine the change in unit-cell dimensions with temperature up to 645°C. The temperature dependence of the principal expansion coefficients (αi) found from the matrix algebra analysis was as follows: α1= 20.492 × 10−6+ 16.490 × 10−9 ( T - 25)°C−1, α2= 7.494 × 10−6+ 5.168 × 10−9( T - 25)°C−1, α3=−0.842 × 10−6− 1.497 × 10−9( T - 25)°C−1. The expansion coefficient α1, nearly along [302] was approximately 3 times α2 along the b -axis. Very small contraction (α3) occurred nearly along [     01]. The volume changes upon martensitic transformations of β↔αL' were very small, and the strain accommodation would be almost complete. This is consistent with the thermoelasticity.  相似文献   

15.
A slurry containing YBa2Cu3O7− x particles and a fine YBa2Cu3(OH) x colloid solution was prepared, and a large-scale bulk YBa2Cu3O7− x superconductor (about 50 mm × 35 mm × 2 mm) was produced by plastic forming without high-pressure molding. The samples molded from the slurry were dried and then fired at 1223 K in air. X-ray diffraction data indicated that the samples had the characteristic orthorhombic YBa2Cu3O7− x structure. Measurements of electrical resistance were carried out between 300 and 50 K by the standard four-probe DC electrical measurement. The samples began superconducting at an onset temperature around 92 K, and the full-transition temperature (critical temperature) ( T c) was 88.7±1.4 K. The critical current density ( J c) measured at 77 K was about 440 A/cm2, the value of J c was improved by the heat treatment under an oxygen atmosphere, and J c=1.6 × 103 A/cm2 was observed. Under the magnetic field (B=1 T), the sample held its superconductivity, and demonstrated that this method can be used to produce the magnetic shielding used in magnetic resonance imaging diagnosis.  相似文献   

16.
A dielectric loss study of porous MgO indicates that H2O absorption on MgO probably leads to the formation of surface defects as well as hydroxide ions. The ac conductivity, σac followed the equation σac1 + KP H2O0.27 from 550° to 800°C when the water partial pressure was varied between 7 × 10−5 and 3 × 10−2 atm.  相似文献   

17.
Porous glass-ceramics with a skeleton of the fast-lithium-conducting crystal Li1+ x Ti2− x Al x (PO4)3 (where x = 0.3–0.5) were prepared by crystallization of glasses in the Li2O─CaO─TiO2─Al2O3–P2O5 system and subsequent acid leaching of the resulting dense glass-ceramics composed of the interlocking of Li1+ x Ti2− x Al x (PO4)3 and β-Ca3(PO4)2 phases. The median pore diameter and surface area of the resulting porous Li1+ x Ti2− x Al x (PO4)3 glass-ceramics were approximately 0.2 μm and 50 m2/g, respectively. The electrical conductivity of the porous glass-ceramics after heating in LiNO3 aqueous solution was 8 × 10−5 S/cm at 300 K or 2 × 10−2 S/cm at 600 K.  相似文献   

18.
The oxygen content of Ni0.685Zn0.177Fe2.138O4+γ was determined gravimetrically at atmospheric pressure in varying Po2 , 3.5 × 10−4 to 1.0 atm at 600° to 1450°C. The phase boundary associated with the precipitation of α-Fe2O3 was determined from the change in slope of γ vs T plots observed on heating. Metastability is particularly evident for curves observed on cooling. Isacompositional lines (0.002 < γ < 0.045) are shown on a plot of log PO2 vs 1/T. An enthalpy of -21.6 kcal/mol is calculated for the oxidation of Fe2+.  相似文献   

19.
Zn-substituted CaCu3Ti4O12 ceramics were synthesized by solid-state sintering. Their microstructures and dielectric properties were investigated. Ca(Cu1− x Zn x )3Ti4O12 single-phase structures were obtained up to x =0.1, and the Cu+/Cu2+ and Ti3+/Ti4+ mixed-valent structure was enhanced with increasing Zn substitution. The giant dielectric response was significantly enhanced by Zn substitution. The dielectric constant increased with increasing x , and a giant dielectric constant plateau as high as ∼9 × 104 was achieved for x =0.1 at 10 kHz, while that for x =0 was ∼3 × 104. The enhanced giant dielectric response was profoundly concerned with the modified mixed-valent structure.  相似文献   

20.
The thermal expansion of the hexagonal (6H) polytype of α-SiC was measured from 20° to 1000°C by the X-ray diffraction technique. The principal axial coefficients of thermal expansion were determined and can be expressed for that temperature range by second-order polynomials: α11= 3.27 × 10–6+ 3.25 × 10–9T – 1.36 × 10–12 T 2 (1/°C), and ş33= 3.18 × 10–6+ 2.48 × 10–9 T – 8.51 × 10–13 T 2 (1/°C). The σ11 is larger than α33 over the entire temperature range while the thermal expansion anisotropy, the δş value, increases continuously with increasing temperature from about 0.1 × 10–6/°C at room temperature to 0.4 × 10–6/°C at 1000°C. The thermal expansion and thermal expansion anisotropy are compared with previously published results for the (6H) polytype and are discussed relative to the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号