首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase our knowledge of the role of peptide hormone stimulation in gap junction protein expression and adrenal cortical cell function, primary rat adrenal cortical cells were treated with adrenocorticotropin, and gap junction proteins were measured. Immunocytochemistry and western blot analysis were used to detect and characterize gap junction type and distribution. The gap junction protein, connexin 43 (alpha 1), was detected. Analysis of six connexin protein types did not reveal gap junction species other than alpha 1. Cells of the inner adrenal cortical zones, zonae fasciculata and reticularis, were demonstrated to have the highest number of gap junctions per cell in the adrenal gland. Adrenal cell cultures enriched for the two inner cortical adrenal zones were established and demonstrated also to express alpha 1 gap junction protein. Adrenocorticotropin (40 mUnits/ml) and dibutyryl cyclic adenosine monophosphate (1 mM) treatments increased alpha 1 gap junction protein levels and decreased cell proliferation rates in the cell cultures. The results are consistent with the hypothesis that gap junction expression can be regulated by adrenocorticotropin acting through the second messenger cyclic adenosine monophosphate. It can be suggested that gap junction expression in the adrenal gland may be under hormonal influence, and that gap junctions serve as passage for movement of molecules involved in control of cell proliferation.  相似文献   

2.
A broad array of stressors induce ACTH release from the anterior pituitary, with consequent stimulation of the adrenal cortex and release of glucocorticoids critical for survival of the animal. ACTH stimulates adrenocortical gene expression in vivo and inhibits adrenocortical cell proliferation. Binding of ACTH to its G-protein-coupled receptor stimulates the production of cAMP and activation of the protein kinase A pathway. The stress-activated protein kinases (SAPKs) (or c-Jun N-terminal kinases) and the extracellular signal-regulated kinases (ERKs) are members of the mitogen-activated protein kinase family of serine/threonine kinases, which have recently been implicated in G-protein-coupled receptor intracellular signaling. The SAPKs are preferentially induced by osmotic stress and UV light, whereas the ERKs are preferentially induced by growth factors and proliferative signals in cultured cells. In these studies, ACTH stimulated SAPK activity 3-4-fold both in the adrenal cortex in vivo and in the Y1 adrenocortical cell line. 12-O-Tetradecanoylphorbol-13-acetate but not cAMP induced SAPK activity in Y1 cells. The isoquinolinesulfonamide inhibitors H-8 and H-89 blocked ACTH induction of SAPK activity at protein kinase C inhibitory doses but not at protein kinase A inhibitory doses. The calcium chelating agent EGTA inhibited ACTH-induced SAPK activity and the calcium ionophore A23187 induced SAPK activity 3-fold. In contrast with the induction of SAPK by ACTH, ERK activity was inhibited in the adrenal cortex in vivo and in Y1 adrenal cells. Together these findings suggest that ACTH induces SAPK activity through a PKC and Ca+2-dependent pathway. The induction of SAPK and inhibition of ERK by ACTH in vivo may preferentially regulate target genes involved in the adrenocortical stress responses in the whole animal.  相似文献   

3.
Among the large number of immediate early genes, nuclear proto-oncogenes of the Fos and Jun families, have been postulated to be involved in the long-term effects of several growth factors on cell differentiation and/or multiplication. Since adrenal cell differentiated functions appear to be regulated by specific hormones and growth factors, the effects of these factors on proto-oncogene mRNA levels were analysed in bovine adrenal fasciculata cells (BAC) in culture. Corticotropin (ACTH) and insulin-like growth factor I increased c-fos and jun-B mRNA, but had no effect on c-jun mRNA and these early changes were associated with a later increase in BAC specific function [ACTH receptors, cytochrome P450 17 alpha) and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD)] and an enhanced steroidogenic responsiveness to both ACTH and angiotensin-II (A-II). On the other hand, A-II increased the three proto-oncogene (c-fos, c-jun and jun-B) mRNAs, induced a decrease of P450 17 alpha and 3 beta-HSD and caused a marked homologous and heterologous (ACTH) densitization. Transforming growth factor beta 1 which only increased jun-B mRNA, markedly reduced BAC differentiated functions and the steroidogenic responsiveness to both ACTH and A-II. Thus, it is postulated that the proto-oncoproteins encoded by the immediate early genes may play a role in the long-term effects of peptide hormones and growth factors on BAC differentiated functions.  相似文献   

4.
Using cultured human fetal adrenal cells, we have investigated the basal secretion of cortisol and dehydroepiandrosterone sulfate (DHAS) and the effect of corticotropin (ACTH), angiotensin-II (A-II) and transforming growth factor beta 1 (TGF beta 1) on the secretion of these steroids and on the mRNA levels of ACTH receptor (ACTHR), cytochrome P-450scc (cholesterol side-chain cleavage), P450 17 alpha (17 alpha-hydroxylase/17-20 lyase) and 3 beta-HSD (3 beta-hydroxysteroid dehydrogenase). The basal DHAS/cortisol ratio declined progressively between 12.5 and 21 weeks. ACTH treatment enhanced the secretion of cortisol and to a lesser extent that of DHAS, and increased the steroidogenic response to an acute stimulation with ACTH. These changes were associated with increased mRNA levels of ACTHR and of the steroidogenic enzymes. A-II treatment also increased the secretion of both DHAS and cortisol, but less than ACTH, enhanced the responsiveness to ACTH and increased ACTHR, P450scc and P450 17 alpha mRNA levels. In contrast, TGF beta 1 alone or together with ACTH decreased DHAS secretion, but not cortisol secretion. Moreover, TGF beta 1 had no effect on ACTHR and P450scc mRNA levels, decreased by about 50% the mRNA levels of P450 17 alpha both in the absence or presence of ACTH, but enhanced the stimulatory effects of ACTH on 3 beta-HSD mRNA. These results, along with those previously reported, suggest that both A-II and TGF beta may play a role in fetal adrenal function. In addition, they show that the effects of both peptides are qualitatively different from, even sometimes opposite to, those previously reported in bovine and ovine adrenal cells.  相似文献   

5.
Freshly isolated rat lymphocytes were tested for corticotropin (ACTH)-dependent calcium uptake. Physiological levels of corticotropin (0.01-1 nM) were found to stimulate both an uptake of 45Ca2+ and a rise in cAMP. The calcium uptake was delayed by 2 min after ACTH addition, but was rapid and transient after the onset of uptake. The extent of calcium uptake was dose dependent on the corticotropin concentration and reached a maximum by 1 nM. Several fragments of corticotropin were tested for activity; both full-length 1-39 and a functional truncated form, 1-25, had equivalent effects on 45Ca influx at 1 nM; however, alpha MSH-(1-13), ACTH-(11-24), or a mixture of alpha MSH and ACTH-(11-24) had no effect on 45Ca influx. Extracellular calcium uptake was blocked by the calcium channel blockers lanthanum, diltiazem, nifedipine, and omega-conotoxin. Splenic lymphocytes that express ACTH receptors had ligand-dependent calcium uptake, but thymocytes that lack ACTH receptors had no ligand-dependent calcium uptake. A mouse adrenal cell line, Y-1, showed the same 45Ca uptake kinetics. These findings demonstrate that both lymphocytes and adrenal cells have a functional ACTH-dependent calcium uptake mechanism.  相似文献   

6.
Although cAMP has long been regarded as the primary intracellular messenger for ACTH-stimulated cortisol secretion, a requirement for Ca2+ is well established. However, a specific mechanism which couples ACTH receptor activation to increased intracellular calcium concentration in the adrenal cortical cell has not been elucidated. Here, we present evidence for a specific model in which ACTH at picomolar concentrations induces cAMP which acts through kinase-dependent and independent pathways to stimulate cortisol secretion. Along one of these pathways, cAMP acts directly to depolarize cells by inhibition of a specific non-inactivating K+ channel (I(AC)). This model provides a specific mechanism whereby cAMP-mediated inhibition of I(AC) is tightly coupled to depolarization-dependent Ca2+ entry and cortisol secretion. Ca2+ and cAMP are dual second messengers in the ACTH signalling pathway that are linked through I(AC) K+ channels.  相似文献   

7.
We studied a patient with food-induced, ACTH-independent, Cushing's syndrome and a unilateral adrenocortical adenoma. In vivo cortisol secretion was stimulated by mixed, glucidic, lipidic, or proteic meals. Plasma ACTH levels were undetectable, but iv injection of ACTH stimulated cortisol secretion. Unilateral adrenalectomy was followed by hypocortisolism with loss of steroidogenic responses to both food and ACTH. In vitro, cortisol secretion by isolated tumor cells was stimulated by the gut hormone gastric inhibitory polypeptide (GIP) and ACTH, but not by another gut hormone, glucagon-like peptide-1 (GLP-1). Both peptides stimulated the production of cAMP but not of inositol 1,4,5-trisphosphate. In quiescent cells, GIP and ACTH stimulated [3H]thymidine incorporation and p42-p44 mitogen-activated protein kinase activity. GIP receptor messenger ribonucleic acid (RNA), assessed by RT-PCR, was highly expressed in the tumor, whereas it was undetectable in the adjacent hypotrophic adrenal tissue, in two adrenal tumors responsible for food-independent Cushing's syndrome, and in two hyperplastic adrenals associated with ACTH hypersecretion. In situ hybridization demonstrated that expression of GIP receptor RNA was confined to the adrenocortical tumor cells. Low levels of ACTH receptor messenger RNA were also detectable in the tumor. We conclude that abnormal expression of the GIP receptor allows adrenocortical cells to respond to food intake with an increase in cAMP that may participate in the stimulation of both cortisol secretion and proliferation of the tumor cells.  相似文献   

8.
A series of cells representing normal, non-tumorigenic cell lines, as well as differentiating neoplastic and undifferentiated neoplastic rat tracheal epithelial cell populations were evaluated for their ability to establish homologous and/or heterologous cell-cell gap junction communication in culture. Gap junction communication was evaluated by flow cytometric quantitation of the transfer of the fluorescent dye calcein from a donor to a recipient cell population via gap junctions. The data indicate that normal primary cultures of rat tracheal epithelial cells, as well as non-tumorigenic cell lines and squamous cell carcinomas cell populations, retain the ability to establish both homologous and heterologous gap junction communication. In all cases an average of >48% of recipient cells had acquired calcein label during a 5-h interval of co-culture of donor and recipient cells at confluent densities. Cells harvested directly from squamous cell carcinoma tumors exhibited similar levels of cell-cell communication. In contrast, cells giving rise to undifferentiated carcinomas, as well as cells harvested from undifferentiated carcinomas, exhibited very low levels or no homologous or heterologous cell-cell communication. Cell populations exhibiting distinctly different communication phenotypes were evaluated by Northern blot analysis for expression of connexins (Cx 26, 32 and 43) and E-cadherin. Neither communicating nor non-communicating cells expressed connexin 32. Those cell populations, which established functional gap junctions, expressed E-cadherin as well as connexin 26 and/or 43. In contrast, those cell populations that lacked the ability to communicate universally lacked expression of E-cadherin, and a quarter also lacked expression of detectable levels of connexin.  相似文献   

9.
In the present study, we investigated the influence of dietary protein restriction stress on adrenal steroidogenic function of the domestic turkey. Immature male turkeys (2 weeks old) were fed isocaloric synthetic diets containing either 28% (control) or 8% (restriction) soy protein for 4 weeks. Trunk plasma was processed for the determination of adrenocorticotropin (ACTH), corticosterone, aldosterone, and total 3, 5, 3'-triiodothyronine (T3). In addition, adrenal glands were processed for the isolation of defined, density-separable, adrenal steroidogenic cell subpopulations: three low-density adrenal steroidogenic cell subpopulations [LDAC-1 (rho = 1.0350-1.0490 g/ml). LDAC-2 (rho = 1.0490-1.0570 g/ml), and LDAC 3 (rho = 1.0370-1.0585 g/ml)] and a high-density subpopulation [HDAC (rho = 1.0590-1.0720 g/ml)], and the steroidogenic function of these cell subpopulations was evaluated. Protein restriction did not influence plasma ACTH However, it increased relative adrenal weight (mg/100 g body wt) (+37.8%) and plasma corticosterone (+317%). By contrast, it depressed plasma aldosterone (-51.2%). In addition, it caused a modest depression in plasma T3 (-25.9%). At the cellular level, protein restriction induced panhypofunction. Basal corticosteroid (aldosterone and corticosterone) production values of LDAC-1, -2, and -3 and HDAC from protein-restricted birds were, respectively, 42.9, 47.9, 30.8, and 57.5% less than those of corresponding cell subpopulations from control birds. In addition, maximal corticosteroid production values of LDAC-1, -2, and -3 and HDAC from protein-restricted birds, in response to ACTH, angiotensin II (AngII), and 25-hydroxycholesterol support, were depressed by 56.8, 55.1, 22.7, and 42.9%, respectively. Interestingly, LDAC-3 was relatively refractory to the influence of this stressor. By contrast, there was the lack of a concentration-dependent aldosterone response of LDAC-1 and -2 to AngII with protein restriction. This was not due to a failure in cell function since aldosterone responses of these cell subpopulations to ACTH and to 25-hydroxycholesterol support were apparent. In addition, the concentration of AngII receptors of cell subpopulations from protein-restricted turkeys, if anything, was greater than that of cell subpopulations from control turkeys. Protein restriction also altered the cell subpopulation composition of the adrenal gland: compared to control, it decreased the proportion of LDAC-2 by 42.3% and increased the proportion of LDAC-3 and HDAC by 68.7 and 302%, respectively. Thus, dietary protein restriction induces adrenal steroidogenic hypofunction in turkeys. In addition, the present study suggests that this nutritional stressor induces marked remodeling of the steroidogenic tissue in the turkey adrenal gland.  相似文献   

10.
OB protein leptin inhibits the secretion of cortisol in primary cultures of bovine adrenocortical cells and down-regulates 17alpha-hydroxylase cytochrome P450 mRNA expression. To analyze if leptin regulates other major enzymes involved in adrenal steroidogenesis we tested its effect on mRNA expression for two further key enzymes, C21-hydroxylase (P450C21) and side-chain cleavage enzyme (P450SCC). Cultured bovine cortical cells were stimulated for 24 hours with 10 nM ACTH, with 10 nM ACTH plus 100 ng/ml leptin or left unstimulated as controls. Stimulation with ACTH led to a 1.75-fold increase of P450C21 mRNA and a 3.31-fold increase of P450SCC mRNA compared to unstimulated controls. Addition of leptin led to a reduction of ACTH-stimulated mRNA accumulation of 73% for P450C21 and of 45% for P450SCC. We therefore suggest that leptin reduces cortisol synthesis in the adrenal by down-regulating the steroid producing enzyme cascade in the cortical cell.  相似文献   

11.
12.
The present report details the role of Ca2+ in the early events of ACTH action in human adrenal glomerulosa cells. Threshold stimulations of both aldosterone and cAMP production were obtained with a concentration of 10 pM ACTH, an ED50 of 0.1 nM, and maximal aldosterone stimulation (5.5-fold increase over control) at 10 nM ACTH. ACTH also induced a sustained increase of intracellular calcium ([Ca2+]i) with maximal stimulation of 1.6 +/- 0.1-fold over control values. This increase does not involve mobilization of calcium from intracellular pools since no response was observed in Ca2+-free medium or in the presence of nifedipine, suggesting the involvement of Ca2+ influx by L-type Ca2+ channels. This was confirmed by patch clamp studies that demonstrated that ACTH stimulates L-type Ca2+ channels. Moreover, the Ca2+ ion is not required for ACTH binding to its receptor, but is essential for sustained cAMP production and aldosterone secretion after ACTH stimulation. These results indicate that, in human adrenal glomerulosa cells, a positive feedback loop between adenylyl cyclase-protein kinase A-Ca2+ channels ensures a slow but sustained [Ca2+]i increase that is responsible for sustained cAMP production and aldosterone secretion.  相似文献   

13.
CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis and modulator of autonomic nervous system activity, also participates in the regulation of appetite and energy expenditure. Antalarmin, a pyrrolopyrimidine compound, antagonizes CRH type 1 receptor-mediated effects of CRH, including pituitary ACTH release, stress behaviors, and acute inflammation. We administered antalarmin chronically to evaluate its effects on hypothalamic-pituitary-adrenal axis function and metabolic status. Adult male rats were treated twice daily with 20 mg/kg of i.p. antalarmin or placebo over 11 days. The animals were weighed; plasma ACTH, corticosterone, leptin, and blood glucose levels were determined; and morphometric analyses were performed to determine adrenal size and structure, including sizing, histochemistry, immunohistochemistry, and electron microscopy. Leptin messenger RNA expression in peripheral fat was analyzed by Northern blot. Antalarmin decreased plasma ACTH (mean +/- SD, 2.62 +/- 0.063 pg/ml) and corticosterone concentrations (10.21 +/- 1.80 microg/dl) compared with those in vehicle-treated rats [respectively, 5.3 +/- 2.0 (P < 0.05) and 57.02 +/- 8.86 (P < 0.01)]. Antalarmin had no significant effect on body weight, plasma leptin, or blood glucose concentrations or fat cell leptin messenger RNA levels. The width of the adrenal cortex of animals treated with antalarmin was reduced by 31% compared with that in controls without atrophy of the gland. On the ultrastructural level, adrenocortical cells were in a hypofunctional state characterized by reduced vascularization, increased content of lipid droplets, and tubulovesicular mitochondria with fewer inner membranes. The apoptotic rate was increased in the outer zona fasciculata of animals treated with the antagonist (26.6 +/- 3.58%) compared with that in placebo-treated controls (6.8 +/- 0.91%). We conclude that chronic administration of antalarmin does not affect body weight, carbohydrate metabolism, or leptin expression, whereas it reduces adrenocortical function mildly, without anatomical, clinical, or biochemical evidence of causing adrenal atrophy. These results are promising for future uses of such an antagonist in the clinic.  相似文献   

14.
Rat adrenocortical cells utilize both low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol for steroid hormone production. In addition to exogenous lipoprotein-derived cholesterol, cells produce cholesterol de novo. Adrenocorticotropin (ACTH) increases both steroid hormone secretion and uptake of LDL and HDL. We studied the expression of LDL receptor mRNA and CLA-1 (a putative HDL receptor) mRNA in cultured rat adrenocortical cells. ACTH increased the amounts of LDL receptor mRNA during 2 to 48 h of stimulation, the highest levels being detected after 2-4 h. Similar results were obtained with cyclic AMP (cAMP) derivatives, 8-bromo cAMP (8-Br cAMP) or dibutyryl cAMP. ACTH increased CLA-1 mRNA during 2 to 24 h of stimulation, the highest levels being detected after 4 h. In conclusion, ACTH up regulates both LDL and HDL receptor mRNA in rat adrenocortical cells.  相似文献   

15.
The role of tumor necrosis factor alpha (TNF alpha) in ovarian function was investigated using in vitro culture of theca and granulosa cells isolated from gilt follicles (4-6 mm) and small (SLC) and large (LLC) luteal cells from mid-cycle corpora lutea. TNF alpha did not affect basal accumulation of progesterone (P) by theca cells after 72 h of culture. However, TNF alpha (0.1-100 ng/ml) caused a marked dose-dependent noncytotoxic inhibition (p < 0.05) of LH or LH+insulin (I)-stimulated P accumulation by theca cells after 72 h. Maximal inhibitions averaged 87 +/- 6% at 5 ng/ml TNF alpha for LH-stimulated P and 69 +/- 4% at 50 ng/ml TNF alpha for LH+I-stimulated P. The inhibitory effect of TNF alpha, evident by 24 h after culture, progressively increased on Days 2 and 3 of culture. The effect of TNF alpha on theca cells was mediated by cAMP generation as evidenced by TNF alpha inhibition of LH-induced cAMP accumulation and P accumulation in response to LH and forskolin but not dibutyryl cAMP. Consistent was this, TNF alpha had no effect on increased P accumulation by theca cells in the presence of 22-hydroxycholesterol or pregnenolone alone, but inhibited further increases in P accumulation stimulated by LH plus sterol substrates. Unlike that in theca cells, FSH-induced P accumulation in granulosa cell cultures was slightly enhanced (p < 0.05) by low doses of TNF alpha (0.1, 0.5, and 1.0 ng/ml) after 72 h, while higher doses (5-50 ng/ml) did not alter P accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The steady state level of most cellular phosphoproteins is dependent on the relative catalytic activities of intracellular protein kinases and phosphatases. In adrenal cortex, ACTH acts through PKA activation and Ser/Tre phosphorylation. Phosphatases involved in this pathway are not completely described, particularly the role of phosphotyrosine protein phosphatase (PTP) activity on ACTH action. We investigated potential changes in PTPs activity in adrenal gland upon in vivo and in vitro PKA activation. In vivo ACTH stimulates cytosolic PTP activity (2-fold). Similar effect is detected by in vitro stimulation. In accordance with the effects of ACTH on PTP activity, cell permeable PTP inhibitors block ACTH stimulation on adrenal zona fasciculata (ZF) cells: ACTH (1 nM) = 108.2 +/- 3.5 ng corticosterone/10(5) cells vs. ACTH + phenylarsine oxide (2 nM) = 60 +/- 4 (P < 0.001) and ACTH + pervanadate (10 mM) = 68 +/- 2 (P < 0.01). These results are reproduced when cells are stimulated with cAMP. The inhibition is not observed when steroidogenesis is supported by 22(R)OH cholesterol. We describe, for the first time, a hormonal regulation of PTP activity. According to the effect of PTP inhibitors on steroid production activated by ACTH we propose that PTP activation is a crucial event in hormone action in the steroidogenic pathway. We also propose that PTP activity is located after PKA activation and prior to cholesterol transport to the inner mitochondrial membrane.  相似文献   

17.
18.
OBJECTIVE: To study the dynamic response of the hypothalamo-pituitary- adrenal axis and of prolactin (PRL) pituitary secretion in rheumatoid arthritis (RA). METHODS: We performed a cortisol releasing hormone (CRH) provocation test followed by determination of adrenocorticotropin hormone (ACTH), beta-endorphin, and cortisol concentration, and then a thyrotropin releasing hormone (TRH) provocation test followed by assessment of PRL pituitary secretion in 10 patients with RA and 5 control subjects. All were women under 40 years of age. Hormone concentrations were assessed by radioimmunoassay. RESULTS: Basal PRL cortisol, and ACTH concentrations were similar in patients with RA and controls. We observed a dissociation between the pituitary secretion of beta-endorphin and of ACTH in response to CRH in RA. The ACTH peak and total ACTH production (area under the curve, AUC) were similar in the 2 groups. In contrast, basal beta-endorphin was increased in RA (12.6 +/- 1.41 vs 8.29 +/- 0.144 pg/ml), and the response upregulated (AUC: 83,080 +/- 12,000 vs 54,200 +/- 2400) after CRH compared to controls (p < 0.05). Cortisol adrenal response curve was blunted, but did not reach statistical significance. In contrast, the PRL response to TRH was increased at 120 and 150 min (3461 +/- 303 vs 1897 +/- 520 muIU/ml)(p < 0.01) in patients with RA, independent of disease activity. CONCLUSION: We observed upregulated pituitary PRL secretion in RA, and a dissociation of ACTH stress. The implication concerning the neuroendocrine system in the chronic immune response in RA is discussed.  相似文献   

19.
BACKGROUND: We investigated the direct effects of propylthiouracil (PTU) on corticosterone secretion both in vivo and in vitro. METHODS: Male rats were divided into 4 groups and then injected subcutaneously with saline, PTU, PTU plus thyroxine (T4), or T4 once daily for 2 weeks. After 2 weeks, rats were decapitated or received adrenocorticotropic hormone (ACTH), intravenously. Zona fasciculata-reticularis (ZFR) cells from normal, saline-, PTU-, PTU plus T4-, or T4-treated rats were incubated with ACTH, forskolin, 8-Br-cAMP, deoxycorticosterone (DOC) +/- PTU (1, 2, or 5 mg/mL) at 37 degrees C for 2 hours. Corticosterone concentrations in plasma and cell media, and 3':5'-cyclic adenosine monophosphate (cAMP) production in ZFR cells were determined by radioimmunoassay. The effects of PTU on the activities of steroidogenic enzymes in ZFR cells were measured by the amounts of intermediate steroidal products separated by thin-layer chromatography. RESULTS: The basal and ACTH-stimulated levels of plasma corticosterone in PTU-treated rats were lower as compared to saline-treated animals. Both basal and ACTH-stimulated corticosterone secretion were inhibited by PTU > 2 mg/mL in rat ZFR cells. The cAMP production induced by forskolin was lower in PTU, PTU plus T4, or T4-treated rats than in saline-treated animals. Chronic administration of PTU or PTU plus T4 inhibited the 3 beta-hydroxysteroid dehydrogenase, 21 beta-hydroxylase, and 11 beta-hydroxylase activities. Administration of PTU (1, 2, and 5 mg/mL) suppressed the basal, ACTH, 8-Br-cAMP, forskolin, and DOC-stimulated corticosterone secretion in rat ZFR cells. Likewise, PTU > 2 mg/mL inhibited the ACTH and 8-Br-cAMP-stimulated levels of intracellular cAMP in rat ZFR cells. CONCLUSIONS: These results suggest that PTU counteracts both basal and ACTH-induced adrenal steroidogenesis through their attenuation of the activity of 11 beta-hydroxylase and cAMP production in rat ZFR cells.  相似文献   

20.
Although fetal pituitary ACTH is important to fetal adrenal growth and steroidogenesis in the second half of primate pregnancy, its role in adrenal development and function has not been established in vivo in the first half of gestation. In the present study, therefore, baboons were treated at midgestation with betamethasone to determine the effect of fetal pituitary ACTH on fetal adrenal growth, development, and ACTH receptor and P-450 enzyme messenger ribonucleic acid (mRNA) levels. The administration of betamethasone to baboon mothers on days 60-99 of gestation (term = 184 days) decreased fetal pituitary POMC mRNA levels by 54% (P < 0.01) and fetal serum ACTH levels to undetectable values (P < 0.05). The decline in ACTH was associated with decreases in fetal adrenal weight (P < 0.001), cortical cell size (P < 0.05), appearance of apoptosis and cellular disorganization, and a loss of immunocytochemically demonstrable definitive zone-specific delta5-3beta-hydroxysteroid dehydrogenase expression. The concomitant administration of ACTH and betamethasone restored these aspects of adrenal integrity to normal. Moreover, there was approximately a 95% decrease (P < 0.01) in fetal adrenal expression of ACTH receptor, P-450 cholesterol side-chain cleavage, and P-450 17alpha-hydroxylase 17/20-lyase mRNA levels after betamethasone administration. We conclude that fetal pituitary ACTH is necessary for the growth and development of fetal and definitive cortical zones and the marked coordinated increase in ACTH receptor and maintenance of P-450 cholesterol side-chain cleavage/P-450 17alpha-hydroxylase 17/20-lyase expression in the baboon fetal adrenal gland during the first half of gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号