首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nanosized Barium Titanate Powder by Mechanical Activation   总被引:3,自引:0,他引:3  
Mechanical activation, without any additional heat treatment, is used to trigger the formation of a perovskite BaTiO3 phase in an oxide matrix that consists of BaO and TiO2 in a nitrogen atmosphere. The resulting BaTiO3 powder exhibits a well-established nanocrystalline structure, as indicated by phase analysis using X-ray diffractometry. A crystallite size of ∼14 nm is calculated, based on the half-width of the BaTiO3 (110) peak, using the Scherrer equation, and an average particle size of 20–30 nm is observed using transmission electron microscopy for the activation-derived BaTiO3 powder.  相似文献   

2.
A commercial submicrometer BaTiO3 powder was analyzed using X-ray photoelectron spectroscopy. The analysis revealed the powder surfaces to be covered with a layer of physisorbed H2O and chemisorbed –OH ions. A BaCO3 residual not detected with XPS was shown to be present in the powder using X-ray diffraction, suggesting that the carbonate takes the form of discrete particles rather than of a continuous surface layer. A relaxed surface phase detected in previous XPS analyses of bulk BaTiO3 was also shown to be present. Depth profiling revealed the powder surfaces to be Ti-rich, confirming the presence of a phase, or phases, to stoichiometrically balance the barium carbonate.  相似文献   

3.
Grain growth and semiconductivity of donor-doped BaTiO3ceramics with an excess of BaO and additions of SiO2or B2O3were studied. The microstructures and electrical measurements on sintered samples revealed that their electrical properties are related to the microstructure development of the sintered samples. Samples heated with an excess of BaO developed a normal microstructure during sintering, as a consequence of normal grain growth (NGG), and were yellow and insulating. In contrast, samples with an excess of BaO and an addition of SiO2or B2O3exhibited anomalous grain growth (AGG) and were dark blue and semiconducting after sintering. When some BaTiO3seed grains were embedded in a sample of donor-doped BaTiO3with an excess of BaO (without SiO2or B2O3), AGG was observed, i.e., some seed grains grew into large grains and were blue and semiconducting. An explanation is given for why AGG is responsible for the oxygen release and the formation of semiconducting grains in donor-doped BaTiO3and not NGG.  相似文献   

4.
Hysteresis in the electrokinetic behavior of colloidal hydrothermal BaTiO3 occurs during sequential acid and base titrations. Ba dissolution during acid titration results in an oxide-rich surface. When the acid-treated BaTiO3 is titrated back to pH 10, dissolved Ba is specifically adsorbed and/or precipitated onto the particle surface. The combined effects of dissolution and subsequent adsorption–precipitation results in titration hysteresis. Most of the labile Ba can be removed by multiple acid treatments, which result in a TiO2-like surface layer composition. Barium dissolution increases with decreasing pH but levels off below pH 4 due to diffusion through the surface oxide layer as predicted previously. A phenomenological model is offered to explain the electrokinetic behavior as a function of pH. It is suggested that inherent BaCO3 contamination is not the primary source of dissolved Ba from hydrothermal BaTiO3 in acidic solution.  相似文献   

5.
The wetting reaction between LiF and BaTiO3 was studied by examining the reaction products on the LiF-wetted surface of BaTiO3. A reduction reaction occurred between the melt of LiF and BaTiO3, causing the formation of LiTiO2 and volatilization of fluorine. The wetted surface consisted of spherical particles of LiTiO2 and eutectically decomposed phases of BaLiF3 and LiTiO2. The formation of LiTiO2 was repressed by the addition of excess BaO in the melt of LiF, and a well-spread film was formed on the surface of BaTiO3. The wetting between BaLiF3 and BaTiO3 was also examined. The reaction of forming LiTiO2 did not occur, and a mosaic film was formed on the surface of BaTiO3.  相似文献   

6.
In the present work, the phase formation and thermal evolution in phosphorus-doped BaTiO3 have been studied using differential thermal analysis, X-ray diffractometry, scanning electron microscopy coupled with energy-dispersive spectroscopy, transmission electron microscopy, and high-temperature nuclear magnetic resonance. Phosphorus cations that are incorporated from ester phosphate form a surface layer that covers the BaTiO3 particles. This layer acts as a reactive coating during sintering. Phosphorus-doped BaTiO3 samples that have been treated at temperatures of 650°–900°C show the presence of crystalline Ba2TiP2O9 and/or Ba3(PO4)2 phases. The appearance of secondary phases is dependent on the cooling rate. Higher temperatures (900°–1200°C) result in the presence of a phosphorus–BaO-rich phase that covers the BaTiO3 particles. As a consequence, the remaining titanium-rich BaTiO3 drives the formation of a liquid phase at temperatures >1200°C. In regard to the reported sintering behavior of P5+-doped BaTiO3, the formation of a phosphorus–BaO-rich phase that covers the BaTiO3 particles could be the origin of the improved porosity coalescence and removal that is observed at the earlier stages of sintering.  相似文献   

7.
BaTiO3 and Ba(Ti,Zr)O3 dielectric powders have been prepared from submicrometer BaCO3, TiO2, and ZrO2. By use of submicrometer BaCO3 the intermediate formation of Ba2TiO4 second phase can be widely suppressed. Monophase perovskites of BaTiO3 were already formed at 900°C and Ba(Ti,Zr)O3 at 1050°C. Aggregates of very small subgrains could be easily disintegrated to particle sizes <0.5 μm.  相似文献   

8.
To uniformly disperse ultrafine BaTiO3 particles with a stoichiometric composition and several tens of nanometers in diameter to primary particles during the sol–gel synthesis process, a new aqueous surfactant with a high hydrophilic group density and special cis-structure was prepared from a microbial product and added to solution before the sol–gel synthesis reaction. Because of the rapid formation of large and porous aggregates which were 30–50 μm in diameter in suspension without addition of this unique structural surfactant, the prepared ultrafine BaTiO3 particles caused rapid sedimentation in suspension. The addition of the surfactant in the range of 7.1 wt% for the synthesized BaTiO3 particles made it possible to decrease the size of the aggregates in suspension as well as the sedimentation velocity while maintaining the stoichiometric composition. The optimum additive content to obtain the minimum aggregate size of about 100–200 nm in diameter and the highest dispersion stability in suspension while maintaining the stoichiometric composition of prepared ultrafine BaTiO3 particles without other phases was determined at about 7.1 wt%. Because the excess addition of this surfactant at more than 8.5 wt% inhibited the uniform synthesis of BaTiO3 particles, an amorphous phase with a highly specific surface area and a BaCO3 phase formed in the synthesized particles.  相似文献   

9.
Silver and its alloys frequently are used as electrode material for BaTiO3-based dielectrics. In the present study, a small amount of fine silver particles have been intimately mixed with BaTiO3 powder. The sintering and grain-growth behavior of the silver-doped BaTiO3 in air are investigated. The solubility of silver in BaTiO3, as revealed by lattice-parameter measurement, electrical measurement, and electron probe microanalysis, is <300 ppm. The densification of BaTiO3 is slowed slightly by the addition of silver inclusions. However, the presence of a small amount (<0.3 wt%) of silver increases the amount and size of abnormal grains. When the silver content is >0.3 wt%, the grain growth of BaTiO3 then is prohibited by the silver inclusions.  相似文献   

10.
We have studied the electrical properties and microstructure of fluorine-doped BaTiO3 ceramics. The samples were prepared using a classical ceramic technology that involved the calcination of intimately mixed powders of BaCO3, TiO2, and BaF2. When the samples were sintered in untreated ambient air, the fluorine from the sample reacted with water vapor and formed gaseous HF. To prevent this hydrolysis of the fluorine, we sintered the samples in dried air. The fluorine-doped BaTiO3 ceramics sintered in a dry atmosphere showed microstructures and electrical properties typical of donor-doped BaTiO3. The samples containing up to 0.3 mol% of fluorine were coarse-grained, semiconducting, and displayed a remarkable PTCR effect. In contrast, the samples with a higher fluorine concentration were fine grained and insulating. A SIMS elemental mapping of the samples showed that the fluorine was distributed throughout the microstructure of the semiconducting samples; however, the fluorine concentration was enriched at grain boundaries and in the BaTi2O5 intergranular phase.  相似文献   

11.
Solvothermal Synthesis and Characterization of Barium Titanate Powders   总被引:2,自引:0,他引:2  
Cubic BaTiO3 powders have been synthesized from gel powders after thermal treatment in an alcohol solution and characterized using X-ray diffractometry, transmission electron microscopy, and other techniques in detail. The borderline reaction conditions, such as the reaction temperature and time, for the synthesis of crystalline BaTiO3 powder in different solvents are established. The single-phase BaTiO3 powder has low agglomeration and seems to have a regular morphology. The formation of BaTiO3 powders via solvothermal reaction is more difficult, in comparison to hydrothermal processing. The crystalline powders, which have a small particle size (∼20–60 nm) and narrow particle-size distribution, can be synthesized in methanol, ethanol, or n -propanol systems. Unlike the hydrothermal reaction, tetragonal-phase BaTiO3 powders cannot be prepared via the solvothermal reaction, even with alkali catalysts.  相似文献   

12.
In this investigation, several experiments have been conducted to study the effects of temperature and atmosphere on the formation of BaTiO3 using the citrate process. It was found that BaTiO3 could be completely formed when the precursor powder was heated at 300°C in O2 for 24 h and then heated in situ at 475°C for 1 h, during which no intermediate phase was observed throughout the process. Moreover, BaTiO3 could be formed at 400°C in O2 via the combustion of organic materials, in which the amount of the residual BaCO3 depended on the partial pressure of O2. The development of BaCO3 and oxycarbonate intermediate was found to be dependent on the temperature, the atmosphere, and the organic materials, and their formation mechanisms are discussed.  相似文献   

13.
The ferroelectric phase transition behavior in BaTiO3 was investigated for various annealing times, temperatures, and Ba/Ti ratios by means of a differential scanning calorimeter. Coupling these observations with powder X-ray diffraction and transmission electron microscopy allowed new insights into the barium oxide (BaO)–titanium dioxide (TiO2) phase diagram. The transition temperature was varied systematically with the Ba/Ti ratio at annealing temperatures from 1200° to 1400°C in air. The transition temperature decreased with increasing concentrations of BaO and TiO2 partial Schottky defects, and showed a discontinuous change at the phase boundaries. Beyond the solubility region, two peritectoid reactions were confirmed and revised; first around 1150°C for Ba1.054Ti0.946O2.946→Ba2TiO4+BaTiO3 and second 1250°C for BaTi2O5→Ba6Ti17O40+BaTiO3, respectively. All other regimes of the BaO–TiO2 were found to be consistent with the reported diagrams in the literature.  相似文献   

14.
The experimental conditions for {111} twin formation in BaTiO3 were investigated. When BaTiO3 compacts without excess TiO2 were sintered either in an oxidizing atmosphere (air) or in a reducing atmosphere (95N2–5H2), no {111} twins formed within the BaTiO3 grains and no abnormal grain growth occurred. In contrast, many {111} twins were present within the abnormally grown grains in the excess-TiO2-containing BaTiO3 samples sintered in air, while no twins were observed in the excess-TiO2-containing samples sintered in 95N2–5H2. X-ray diffraction analysis showed that excess TiO2 forms a Ba6Ti17O40 phase during sintering with the space group A 2/ a in air and a Ba6Ti17O40− x phase with the space group C in 95N2–5H2. It appears therefore that excess TiO2 and an oxidizing atmosphere are necessary for {111} twin formation in BaTiO3. These results may also indicate that the interface structure between BaTiO3 and Ba6Ti17O40 influences the twin formation.  相似文献   

15.
This work examines the effects of Ag on stoichiometric and nonstoichiometric BaTiO3 in terms of the unit cell dimensions, the polycrystalline microstructure, and the dielectric properties. Stoichiometric BaTiO3 and compositions with 0.5 mol% TiO2 excess and 0.5 mol% BaO excess were prepared via solid-state synthesis with varying amounts of Ag up to 0.3 mol%. Experimental results indicate that stoichiometry plays a significant role in the solubility of Ag and its effects on the physical properties. Overall, the solubility of Ag was negligible in stoichiometric BaTiO3. However, compositions with excess TiO2 stabilized the solubility of Ag as evidenced from changes in the unit cell dimensions and dielectric properties. Based on these data, it is proposed that Ag occupies the A-site in the perovskite structure with an upper limit of Ag solubility of 0.06 mol% Ag in BaTiO3 with 0.5 mol% excess TiO2. Dielectric measurements showed that Ag concentrations approaching 0.3 mol% gave rise to an increase in the space charge effect, especially at temperatures above T C. In both nonstoichiometric compositions, the presence of a liquid Ag phase during thermal processing was found to affect microstructural development and sintering.  相似文献   

16.
A transparent and stable monodispersed suspension of nanocrystalline barium titanate was prepared by dispersing a piece of BaTiO3 gel into a mixed solvent of 2-methoxyethanol and acethylacetone. The results of high-resolution transmission electron microscopy (HR-TEM) and size analyzer confirmed that the BaTiO3 nanoparticles in the suspension had an average size of ∼10 nm with a narrow size distribution. Crystal structure characterization via TEM and X-ray diffraction indicated BaTiO3 nanocrystallites to be a perovskite cubic phase. BaTiO3 thin films of controlled thickness from 100 nm to several micrometers were electrophoretic deposited compactly on Pt/Ti/SiO2/Si substrates. The deposited thin film had uniform nanostructure with a very smooth surface.  相似文献   

17.
The thermal behavior of nanoparticles BaTiO3, prepared by a radio-frequency plasma chemical vapor deposition (RF-plasma CVD) method, was characterized by various analysis methods. The BaCO3 phase was included in the powder as byproducts, which is also observed in hydrothermal BaTiO3 powder. The BaCO3 phase decomposed and disappeared by annealing at 873 K for 30 min. H2O, N2, CO2 and H2, were detected by a thermal desorption spectra measurement from BaTiO3 powder. The annealed powder became well-crystallized particles without grain growth, although as-prepared powder included polycrystalline particles. We successfully observed in-situ grain growth for BaTiO3 nanoparticles by thermal transmission electron microscope. At the initial step of normal grain growth, very fine particles with 40–60 nm diameters started to merge into the larger grains around 1083 K. The migration rate was measured by video images and a grain boundary diffusion coefficient Dgb was calculated.  相似文献   

18.
Preparation of Barium Titanates from Oxalates   总被引:6,自引:1,他引:5  
The decomposition of mixed barium titanium oxalates was studied by means of various thermochemical as well as spectroscopic methods. Infrared (IR) spectra of the mixed oxalates indicate the existence of an octahedral complex with Ti chelated by oxalate groups. In general, the results of both IR and the thermochemical analyses suggest that the oxalates are first converted to unidentate carbonate, then to ionic carbonate, and finally to mixed oxides of perovskite structure. The decomposition processes were found to depend upon the atmosphere. In the presence of oxygen the stoichiometrically mixed oxalates decompose by forming TiO2 and BaCO3 as intermediates. Under vacuum, two routes of decomposition occur in parallel. In one route, TiO2 and BaCO3 are formed as intermediates; in the other, partially reduced TiOx(x < 2) is formed, which further reacts with BaCO3 to produce also BaTiO3, CO2 and CO.  相似文献   

19.
The solubility and mode of incorporation for BaO in BaTiO3 were studied by X-ray powder diffraction, scanning and transmission electron microscopy, electron probe microanalysis, and equilibrium electrical conductivity measurements. The presence of barium orthotitanate, Ba2TiO4, as a second phase for samples containing >0.1 mol% excess BaO was confirmed by direct microscopic examination. There was no evidence to support the incorporation of excess BaO into BaTiO3 by a Ruddlesden-Popper type of superlattice ordering mechanism. Measurement of the equilibrium electrical conductivity showed no detectable shift in the conductivity profile resulting from excess BaO, thus setting an upper limit of 100 ppm for the solubility of BaO in BaTiO3.  相似文献   

20.
The formation of BaTiO3 from equimolar BaCO3 and TiO2 (rutile) mixtures was studied in air and in CO2. A small amount of BaTiO3 is formed first directly from BaCO3 and TiO2 at the surface of contact. From then on it is a diffusion-controlled reaction, and both BaTiO3 and Ba2TiO4 are produced, with Ba2TiO4 being formed in much larger amounts. In 1 atmosphere of CO2, the intermediate Ba2TiO4 was suppressed up to a temperature of about 1100°C. in agreement with thermodynamic calculations. Ba2TiO4 reacts fast with 1 atmosphere of CO2 below about 1100°C. to produce BaTiO3and BaCO3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号