共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
为解决信号去噪中白噪声的抑制问题,在D.L.Donoho和I.M.Johnstone提出的多分辨分析小波阈值去噪方法的基础上,提出一个双变量阈值函数。与传统的硬阈值、软阈值函数相比,该函数有优越的数学特性。仿真实验表明,新的阈值函数可以有效地去除白噪声干扰,无论在视觉效果上还是在信噪比和均方误差定量指标上,均优于上述去噪方法,具有较高的实用价值。 相似文献
3.
基于小波的信号阈值去噪算法研究 总被引:1,自引:0,他引:1
阈值去噪的方法就是在小波分解后的各层系数中,对模大于或小于某阈值T的系数分别处理,然后对处理完的小波系数再反变换重构出经去噪后的信号.在阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数模的不同的处理策略以及不同的估计方法. 相似文献
4.
潘颖辉 《电脑编程技巧与维护》2016,(13)
受外界条件等因素的影响,采集到的声音信号中不可避免存在着大量的突变信号,因此需要对其进行降噪处理.传统的傅里叶分析不能同时分析信号在时域和频域的全貌和局部化特征,而这些局部化信息恰恰是表征声音信号的关键特质.小波变换在突变信号分析中得到广泛的应用,在声音去噪应用中取得了良好的效果,比较了小波分析和小波包分析两种去噪方法. 相似文献
5.
心音信号的自适应小波去噪 总被引:2,自引:0,他引:2
在采集心音信号过程中,难免要引入噪声,这些噪声影响到心音的分析结果。由于心音信号的非平稳性,普通的滤波方法在滤去噪声的同时,会丢失部分心音成分。文中提出了一种新的基于小波变换的自适应滤波方法,该方法能够有效抑制噪声,经实例验证,取得了满意的结果。 相似文献
6.
心音信号的自适应小波去噪 总被引:1,自引:0,他引:1
在采集心音信号过程中,难免要引入噪声,这些噪声影响到心音的分析结果。由于心音信号的非平稳性,普通的滤波方法在滤去噪声的同时,会丢失部分心音成分。文中提出了一种新的基于小波变换的自适应滤波方法,该方法能够有效抑制噪声,经实例验证,取得了满意的结果。 相似文献
7.
8.
9.
在实际战场中,采样声信号不可避免的受到各种噪声和干扰的污染,导致声信号特征提取变得困难而不利于进一步的目标识别。为了有效去除混叠在战场声信号中的噪声信号。运用离散小波理论对其进行阂值去嗓处理。通过对几种去噪方法对比分析和基于MATLAB信号去噪的仿真试验,仿真结果表明对于战场声信号而言,基于Birge—Massart阂值算法具有更好的去噪效果。 相似文献
10.
11.
12.
袁飞 《自动化技术与应用》2011,30(8):40-42
通过小波阈值方法可以去除语音中的噪声,但它的结果中会出现诸如Pesudo-Gibbs现象之类的情况.为消除此类情况,将平移不变量小波变换引入到语音信号去噪中,并结合阈值方法进行去噪处理.经过仿真实验,证明这种方一法比一般的阈值方法有很大改进,提高了信噪比. 相似文献
13.
14.
分布式电站的功率调节系统采用并网逆变器进行直流/交流电转换输出,其核心处理器是定点型DSP器件.为了抑制系统外部干扰和测量噪声,需要在控制系统中加入滤波环节.由于采样信号波形是非光滑曲线,存在跳变点,为了获得去噪后良好的近似精度和不失真,选用自适应小波变换来线性近似信号.文章针对控制系统的处理器的特点,选择提升小波变换,应用于DSP嵌入式系统的反馈信号数字滤波.实验结果显示,采用自适应提升小波变换滤波后,在不影响控制系统的实时性能条件下,具有良好的抗干扰能力和去噪效果. 相似文献
15.
心电信号的小波阈值去噪算法研究 总被引:4,自引:0,他引:4
本文采用基于小波变换的阈值去噪方法对心电信号进行了去噪处理.给出了基小波、分解尺度、阈值的具体选择方法,在比较采用不同的基小波进行阈值处理方法的基础上.给出了采用coif4小波进行局部自适应软阈值处理的改进算法.实验结果表明,采用该算法降噪后信号的信噪比为34.019dB,将原含噪信号的信噪比提高21.879dB,去噪效果较好. 相似文献
16.
基于级联离散小波变换的信号去噪方法研究 总被引:1,自引:0,他引:1
提出了基于级联离散小波变换的信号去噪方法。该方法通过对带噪信号作一层离散小波变换(DWT)后提取的低频部分和高频部分分别作一层DWT和四层DWT,然后,对低频部分提取的低频成分和高频成分均作三层DWT,接着,对所有分解的小波系数进行阈值处理,最后,完成信号重构。实验结果表明:在同样的小波分解层次下,本方法去噪效果好于DWT法和WPD法。 相似文献
17.
18.
基于小波变换的信号去噪的应用研究 总被引:4,自引:0,他引:4
文章指出了小波变换去噪方法与一般意义下去噪方法的不同,讨论了小波变换算法的优越性,进而提出了利用小波算法对含噪信号进行逐层分析与重构,将原始信号分解为不同频带,滤除不需要的频带,最后用Mallat重建算法得到去噪后的信号,既有效地滤除了信号噪声,又保留了信号的突变性。大量的实验结果和进一步的分析表明,该技术应用在动力系统的去噪研究中将更加有利于系统的稳定运行。 相似文献
19.
自适应提升小波变换与信号去噪 总被引:4,自引:0,他引:4
文章引入了基于提升法的自适应离散小波变换,根据LMS自适应法使伯恩斯坦预测算子自适应匹配特定的数据序列,而且应用该方法于信号的软域值去噪,数值仿真实验表明自适应提升小波变换同经典的小波变换相比,去噪后信号的信噪比效率相近,提升方法的优点在于其设计上的灵活性和计算简单。 相似文献
20.
信号在采集、转换和传输过程中经常会受到设备、环境等因素的影响,致使现实信号成为含噪信号,对得到的信号进行去噪是信号处理中的一个很重要的环节。在近二十年中小波去噪方法应用比较广泛并取得了较好的效果,越来越多的学者用小波阈值进行信号去噪。首先讨论了小波阈值去噪中估计小波系数的软阈值和硬阈值方法,然后本着提高去噪质量的目的,提出了一种改进方案。该方法在阈值函数中加入因子,可以自适应地减小阈值函数中的恒定偏差。与传统阈值去噪方法相比,有以下两点优势:①去噪效果比传统阈值去噪方法好。②具有一定的自适应性。此外,还用Matlab仿真实验证实了该改进方案的有效性和优越性。 相似文献