首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of inducing artificial crack closure into fatigue cracks in AISI 304 stainless steel by infiltrating foreign materials have been investigated. The foreign materials used include pure epoxy resin and resin mixed with 0.3  μm and 4  μm TiO2 , 4  μm Fe, as well as 18  μm AISI 316L stainless steel. In all the cases studied, different degrees of crack growth retardation have been achieved. When the particle size was small enough or when the prop-opening load for infiltration was large enough, crack arrest occurred. Crack retardation and arrest were mainly caused by the infiltrated material rather than the propping load. A rigid-wedge model was found to have limited value in predicting the possible outcome of an infiltration. On the other hand, the degree of crack closure immediately on resumption of a test after infiltration could tell whether the treatment was going to be successful or not.  相似文献   

2.
Abstract— The behaviour of fatigue cracks in an Al-alloy under cyclic compression, either with or without overloads, was studied. For constant-amplitude compressive cycling, a non-catastrophic (saturation) character of the fatigue crack behaviour was confirmed, with the final depth of a crack depending on the applied load level. Single (tensile or compressive) intermittent overloads were shown to re-activate a previously arrested crack while reversed (tensile—compressive or compressive—tensile) ones were also shown to maintain continual fatigue crack extension under otherwise fully compressive cycling.  相似文献   

3.
Abstract— The behaviour of physical short mode I cracks under constant amplitude cyclic loading was investigated both numerically and experimentally. A dynamic two-dimensional elastic-plastic finite element technique was utilised to simulate cyclic crack tip plastic deformation. Different idealisations were investigated. Both stationary and artificially advanced long and short cracks were analysed. A parameter which characterises the plastically deformed crack tip zone, the strain field generated within that zone and the opening and closure of the crack tip were considered. The growth of physically short mode I cracks under constant amplitude fully reversed fatigue loading was investigated experimentally using conventional cast steel EN-9 specimens. Based on a numerical analysis, a crack tip deformation parameter was devised to correlate fatigue crack propagation rates.  相似文献   

4.
Abstract— Constant and variable amplitude (VA) loading fatigue studies were carried out on a 6261 aluminium alloy using cylindrical plain hour-glass specimens. Crack growth was monitored via surface replication using cellulose acetate.
Crack growth results at constant amplitude loading show the typical intermittent high and low periods of growth rate associated with crack-microstructure interactions. Acceleration in growth rate during an overload block depends on crack length and stress amplitude ratio. It appears to pass through a maximum at a crack length corresponding to the first microstructural barrier. Microstructural-based modelling is therefore required for small fatigue cracks, rather than solely closure-based modelling. The Navarro-de los Rios model of short fatigue crack growth appears able to provide good indications of crack growth rates under VA block loading, and gives reasonable life predictions.
For short cracks (surface length < 80 μm) and a small overload ratio (6.7%), crack growth may show severe retardation during the overload block. This is ascribed to crack tip blunting being more important than the increase in stresses when closure is low. It appears from a Miner's rule type exercise, that VA block loading has its major effect on growth at a surface crack length of 20 μm. This means that the crack initiation period cannot be ignored in life prediction models for small fatigue cracks.  相似文献   

5.
用低压渗流法制备泡沫铝合金   总被引:4,自引:1,他引:4  
用低压渗流法生产泡沫铝合金,研究了影响液体金属渗流高度的工艺参数。实验表明,渗流高度随着颗粒的预热温度、外加渗流压力和铝液浇注温度的升高而增加,其中颗粒预热温度的影响最为显著,其他因素的影响不大。实验还表明,颗粒尺寸对于降低渗流高度起了重要作用,颗粒尺寸越小,渗流高度越低。对于不同尺寸的颗粒,都存在一个临界预热温度。  相似文献   

6.
研究了恒定ΔK条件下,单次拉伸超载对A537钢疲劳裂纹扩展速率的影响,并利用激光散斑技术原位研究超载前后的裂尖应变场,裂纹闭合效应。结果表明:超载后裂纹闭合效应呈增强趋势,裂尖应变呈下降趋势。伸超载有阻滞裂纹扩展的作用。  相似文献   

7.
8.
本文根据Laplace方程及流体力学的基本原理建立了挤压浸渗法制备金属基复合材料的浸渗压模型,应用该模型对ZA22/Al2O3复合材料的浸渗过程进行了理论分析.以此为指导制出了性能优良的ZA22/Al2O3复合材料.   相似文献   

9.
对铝硅合金进行了热疲劳模拟实验和应力、应变分析。铝硅合金的导热系数高,高温弹性模量低,温度涨落过程产生的宏观热应力低于同一温度下合金的屈服应力和疲劳极限;而铝、硅热膨胀系数的差异将在铝硅相界等局部区域产生远大于宏观热应力的微观热应力,并因此萌生热疲劳裂纹。通过变质工艺改变硅相形态,可改善合金的抗热疲劳性能。  相似文献   

10.
研究了粘剂性质、含量及残余应力状态对纤维-铝合金胶接层板(ARALL)疲劳裂纹扩展特性的影响,分析了裂纹扩展过程中的分层状态的变化,结果表明,ARALL层板内富胶层的剪切形变和伴随裂纹扩展的分层区越大,即这两方面耗散能量越多,则疲劳裂纺扩展速率越低;胶粘剂含量的影响不明显,给层板施加预应力极大降低了层板的疲劳裂纹扩展速率,其本质在于裂尖在同样的疲劳载荷下实际所受到的有效应力降低。  相似文献   

11.
Fatigue mechanisms are investigated in AK6 aluminum alloy under biaxial loading. The development of a semi-elliptic crack under conditions of biaxial compression-tension is connected with the emergence of spherical particles. A mechanism of rotational instability is suggested, connecting the processes of particle formation with a specific mechanism of material failure. A similarity is revealed in the formation of fatigue striations within the studied ratio λ of biaxial loads from –0.9 to +0.9. As λ increases, the crack-growth rate also increases. It is suggested that this be allowed for when introducing a correction to the mode I stress-intensity factor.  相似文献   

12.
Abstract— A 3-D elastic-plastic finite element analysis has been developed to simulate the deformation development along the front of a long mode I single edge crack in plates subjected to either monotonic or cyclic loading. Idealisations having both equal and unequal layers through the thickness of the plate were involved. Plane stress and plane strain 2-D finite element analyses were also performed and compared with the present 3-D solutions. The development of the monotonic and cyclic crack tip plastically deformed zones and opening displacements were traced and correlated to accommodate the effect of the plate thickness and the profile of the crack front. A previously developed crack tip deformation parameter was invoked to predict the effect of the specimen thickness on mode I fatigue crack growth and the associated change of crack front profile. Comparison of such a prediction and the experimental findings of the present work reflected the capability of that parameter in modelling fatigue crack growth through the plate thickness.  相似文献   

13.
Abstract— A basic study was performed on the evolution of three-dimensional shapes of small surface fatigue cracks during fatigue, and the effect of this evolution on small-crack growth behavior of a titanium-base alloy. Specifically, the nature and the magnitude of variations in crack aspect ratio, a/c (a is the crack depth and c is the half-surface crack length), during cyclic crack growth and its impact on growth rates have been studied. Experiments were performed on naturally initiated micro-cracks in a microstructure consisting of equiaxed primary-α2 phase in a Widmanstätten (transformed β) matrix. Several cracks under stress ratio (R) levels of 0.1 and ?1, were studied. A specialized experimental system, consisting of a laser interferometer (to measure precisely the small-crack surface displacements), and a photo microscope (to automatically and continuously photograph the fatigue micro-cracks) was employed in the study. Apparent aspect ratios of surface cracks were calculated from the compliance response and the surface crack length data as a function of fatigue cycles. These data enabled accurate calculations of growth rates at the surface crack tip as well as the tip at depth in the bulk over the entire crack growth period, thus giving an insight into the crack growth process. Measurements of closure levels of small cracks were also performed and were used to partly account for the differences in growth rates. In the comparisons of small-crack growth data with the large-crack data, surface growth rates correlated relatively well with the large-crack data. Growth rates at depth exhibited large variations due to the irregularity of crack fronts at this location, and these rates deviated significantly from the large-crack behavior. Additionally, these growth rates varied between different cracks. An attempt was made to rationalize these observations in terms of the effects of inhomogeneities present in the microstructure.  相似文献   

14.
15.
Abstract— Fatigue crack growth behaviour under block loading sequences has been studied on the aluminium alloy 2024 T351, using four different equivalent constant amplitude concepts. The root mean squared method gives acceptable results only for relatively long blocks. The equivalent method based on the Paris law (modified to take into account crack closure) gives good predictions for the observed growth rates as does Elbers' method. Finally, a new method based on energy considerations gives excellent results for the studied test conditions.  相似文献   

16.
A modelling procedure was developed which is applicable to crack growth in notched components subjected to multiaxial fatigue for materials with different microstructures. An algorithm for crack growth, in a microstructure that was modelled as hexagons, was established as a competition between growth by crack linkages during the crack initiation and propagation stages and the propagation of a dominant crack as a single crack. Analytical results simulated by using the developed model were compared with experimental results from fatigue tests which had been conducted using notched specimens of pure copper, carbon steel and two kinds of titanium alloy. Cracking morphology, which was experimentally observed to depend on the microstructure and the loading mode, was well simulated using the present model. The fatigue failure life of a notched specimen was statistically estimated by a Monte Carlo procedure based on the model. The simulated life with a statistical scatter-band almost coincided with the experimental data.  相似文献   

17.
In the short crack regime of the fatigue process, grain boundaries in steels are barriers against crack growth. In this paper, we use: (1) a method involving crack density; and (2) a method of dimensional analysis, to evaluate the effects of grain size and grain-boundary resistance on short crack behaviour and fatigue life. The results show that the fatigue life increases with a decrease in grain size and an enlargement in the obstacle effect of a grain boundary. An experimental investigation is consequently performed and four groups of stainless steel specimens are used with different grain sizes. The experimental measurements show the dependence of fatigue properties on grain size, which are in good agreement with the theoretical results.  相似文献   

18.
This paper presents the results of recent studies of the micromechanisms of room temperature fatigue damage elucidated in a metastable beta Ti15V3Cr3Al3Sn alloy. The fatigue damage mechanisms observed include: grain boundary sliding, crack initiation/propagation, and crack coalescence prior to the onset of catastrophic failure. Mechanistically based models are presented for the prediction of fatigue damage (plasticity and cracking). The models are based on fracture mechanics idealizations of the complex damage modes observed during fatigue experiments, in which acoustic emission signals were collected from deformed sections. Following appropriate noise filtration and careful analysis of the detected acoustic emission signals, the number of counts due to cracking is shown to represent a scalar measure of damage. A modified power law expression (modified Paris law) is also proposed to describe the relationship between the cracking count rate and the effective stress intensity factor. Estimates of the fatigue lives are obtained by integrating between appropriate limits, after the separation of variables in the modified Paris law expression. The measured and predicted fatigue lives were generally in good agreement.  相似文献   

19.
This paper deals with the effect of anisotropy on fracture processes of a directionally solidified superalloy, Mar-M247, under a push–pull creep-fatigue condition at high-temperature. Three kinds of specimen were cut from a cast plate such that their axes possess angles of 0°, 45° and 90° with respect to the 〈001〉 orientation that is aligned parallel to the solidification direction (also to the grain boundaries and primary dendrite axis); these specimens being denoted the 0° specimen, the 45° specimen, and the 90° specimen, respectively. The tests were conducted at 1273  K (1000 °C) in air under equal magnitudes of the range of a Δ J -related parameter, Δ W c , which represents the driving force for crack growth in creep-fatigue. Although the grain boundaries are macroscopically parallel to the solidification direction, they are wavy or serrated microscopically. Small cracks nucleate along parts of the grain boundaries perpendicular to the stress axis in all specimens. The 90° specimen has the shortest crack initiation life and the 0° specimen has the longest. In the 90° and 45° specimens, intergranular cracks continue to nucleate and a main crack is formed along the grain boundary due to the frequent coalescence of small cracks. In the 0° specimen, cracks grow into the grain, and transgranular cracks coalesce along the primary dendrite or grain boundary. The 0° specimen exhibits the slowest crack growth rate and the 90° specimen the fastest. These differences in the initiation and growth behaviour of small cracks cause the longest failure life in the 0° specimen and the shortest in the 90° specimen.  相似文献   

20.
The practical applications of studies related to constant amplitude mode I loading are somewhat limited in situations where more than one mode exists. So, criteria, rules and laws for these situations have to be validated with experiments. This paper extends previous results by the authors for mixed-mode I and II fatigue loading. An effective stress intensity factor range which considers crack closure and crack surface interference is described for the analysis of a crack under mixed-mode I and II fatigue loadings, and this factor is assessed from experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号