首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以车用316L不锈钢作为基材,对其实施等离子喷涂处理使其表面生成Mo-Al膜,分析表面温度变化、电弧特征以及形成的磨痕特点,对比了不同喷涂频率下得到的膜载流摩擦磨损特性。研究结果表明:当频率20 Hz时,在磨痕的表面区域形成了一层具有均匀尺寸的磨粒。元素分布表明Al元素发生了少量转移,跟膜层组织成分较为接近。在频率20 Hz下形成了具有完整结构的摩擦膜,此时在表面区域形成了尺寸均匀的磨粒。提高喷涂频率后,会引起摩擦副的大幅冲击并发生明显震动,温度迅速上升,更易发生氧化。当提高喷涂频率后,摩擦系数以及磨损率都发生了先减小再升高的变化规律,转折点在喷涂频率20 Hz,此时取值分别为0.326和68.5。  相似文献   

2.
纳米铜自修复添加剂摩擦学性能研究   总被引:1,自引:0,他引:1  
刘谦  徐滨士  许一  史佩京  于鹤龙 《材料保护》2004,37(Z1):147-149
利用T-11摩擦磨损试验机进行了纳米铜自修复添加剂摩擦磨损试验,利用光学显微镜和扫描电镜对摩擦表面进行了形貌观察,利用能谱仪进行了磨痕表面元素分析.结果表明磨痕表面形成了富含铜元素的修复膜,静止上试样的磨痕表面比运动的下试样表面形成的薄膜厚,在摩擦表面有原始微损伤(磨削沟槽)的部位边缘有不连续的铜膜沉积.分析认为摩擦使得表面金属活化,不断产生新鲜金属表面,有利于自修复添加剂中的纳米铜与金属结合形成表面膜,对磨损表面起到自修复作用.  相似文献   

3.
以316不锈钢和TC11钛合金作为摩擦副类型,研究其对高速钢表面脉冲激光熔覆CrAlSiN薄膜表面摩擦磨损性能测试分析。研究结果表明:CrAlSiN薄膜表层部位存在许多针孔、凹坑和白色颗粒,并且颗粒尺寸都很大截面区域内生成了许多致密结构的组织,厚度2.5μm左右。薄膜硬度为2416 HV,和基体间的结合力等于53 N,达到良好综合性能。316不锈钢与CrAlSiN薄膜之间对磨后在薄膜表面生成了许多大尺寸磨痕,结合磨痕深度发生了轻微磨损;TC11钛合金与CrAlSiN薄膜进行对磨在薄膜上生成具有较大宽度磨痕,出现了轻度磨损。以不锈钢作为配副材料时,形成了较大的摩擦系数。以TC11钛合金作为配副材料时,发生了严重磨损的现象,跟316不锈钢对磨时形成了深度很大的磨痕。它们磨损机制相近,都是以磨粒磨损和粘着磨损为主。  相似文献   

4.
以316不锈钢和TC11钛合金作为摩擦副类型,研究其对高速钢表面脉冲激光熔覆CrAlSiN薄膜表面摩擦磨损性能测试分析。研究结果表明:CrAlSiN薄膜表层部位存在许多针孔、凹坑和白色颗粒,并且颗粒尺寸都很大截面区域内生成了许多致密结构的组织,厚度2.5μm左右。薄膜硬度为2416 HV,和基体间的结合力等于53 N,达到良好综合性能。316不锈钢与CrAlSiN薄膜之间对磨后在薄膜表面生成了许多大尺寸磨痕,结合磨痕深度发生了轻微磨损;TC11钛合金与CrAlSiN薄膜进行对磨在薄膜上生成具有较大宽度磨痕,出现了轻度磨损。以不锈钢作为配副材料时,形成了较大的摩擦系数。以TC11钛合金作为配副材料时,发生了严重磨损的现象,跟316不锈钢对磨时形成了深度很大的磨痕。它们磨损机制相近,都是以磨粒磨损和粘着磨损为主。  相似文献   

5.
纳米Cu添加剂润滑摩擦表面分析   总被引:3,自引:1,他引:2  
利用T-11摩擦磨损实验机进行了用纳米铜添加剂润滑的摩擦磨损实验,利用光学显微镜和扫描电镜对摩擦表面进行了形貌分析,利用能谱仪进行了磨痕表面元素分析.结果表明,磨痕表面形成了富含Cu元素的表面膜,静止上试样的磨痕表面比运动的下试样表面形成的薄膜厚,在摩擦表面有原始微损伤(磨削沟槽)的部位边缘有明显的Cu元素沉积,而在沟槽的底部没有Cu元素.分析认为摩擦使得表面金属活化,不断产生新鲜金属表面,有利于润滑剂中的纳米Cu与金属结合形成表面膜.  相似文献   

6.
采用线性离子束沉积技术于AZ80镁合金微弧氧化(MAO)陶瓷层表面沉积不同厚度的类金刚石碳(DLC)膜,形成DLC/MAO复合膜层。对比研究4种膜基系统的表面结构特征、力学性能以及摩擦学性能差异。结果表明:随DLC膜厚度增加,复合膜层表面微孔数量减少,孔径减小,但凹凸不平趋势增加,且DLC膜表面颗粒特征更加明显,表现为DLC-80min/MAO/AZ80膜基系统具有最小的表面粗糙度,最大的硬度H、弹性模量E及H/E值;不同厚度DLC/MAO/AZ80膜基系统平均摩擦因数较MAO/AZ80显著降低;DLC膜厚度增加导致3种复合膜基系统的表面微观结构改变,使得摩擦因数与磨痕形貌存在差异;各膜基系统表面磨痕处均形成了Fe的转移层,由于表层DLC膜"裸露"的大量C对磨损界面具有很好的润滑作用,而使得镁合金基体获得有效保护。  相似文献   

7.
为保证低温离子渗硫层的厚度与均匀性,用超声滚压技术将45钢表面激光熔覆镍基层纳米化,再低温离子渗硫。利用XPS和XRD技术分析了硫化物层的物相组成;在UMT-3型球盘式可控环境摩擦磨损试验机上研究了干摩擦和46号机械油润滑下熔覆层纳米化与否渗硫层的摩擦学性能,利用SOHIO型三维白光干涉表面形貌仪测量了磨痕三维形貌。结果表明:熔覆层纳米化后的渗硫层致密、均匀,表面S元素的质量分数由5%增加到13%左右,渗硫层中的硫化物以Fe S为主,Fe S2含量明显减少;干摩擦条件下熔覆层纳米化后渗硫层的摩擦系数由未纳米化的0.60降低到0.45,磨痕形貌窄而浅,摩擦学性能明显优于未纳米化的渗硫层。  相似文献   

8.
为提高弹簧用51CrV4钢表面的耐磨性能,对其进行不同时间和温度下的渗氮处理,实验测试其微观组织,硬度以及摩擦性能。研究结果表明:渗氮层形成了未被腐蚀的明亮化合物层,扩散层由于受到浸蚀作用而转变为黑色。基底只有一种α-Fe组织。渗氮处理后形成了γ-Fe4N相、CrN相等多个物相组织。随着渗氮时间的增加和渗氮温度的增加,渗氮层厚度表现出单调增加的变化规律。渗氮后试样硬度达到950 HV以上,相对于原始试样硬度发生了明显上升。经过450℃与20 h处理后获得最小磨损率和摩擦系数,此时试样形成了较为光滑的磨痕形貌,磨损程度很小,当硬度提高后可以获得更高的耐磨能力。当温度继续上升以及时间延长后,渗氮物发生了粗化的现象,引起表面硬度减小,最终降低了耐磨性。  相似文献   

9.
为提高弹簧用51CrV4钢表面的耐磨性能,对其进行不同时间和温度下的渗氮处理,实验测试其微观组织,硬度以及摩擦性能。研究结果表明:渗氮层形成了未被腐蚀的明亮化合物层,扩散层由于受到浸蚀作用而转变为黑色。基底只有一种α-Fe组织。渗氮处理后形成了γ-Fe4N相、CrN相等多个物相组织。随着渗氮时间的增加和渗氮温度的增加,渗氮层厚度表现出单调增加的变化规律。渗氮后试样硬度达到950 HV以上,相对于原始试样硬度发生了明显上升。经过450℃与20 h处理后获得最小磨损率和摩擦系数,此时试样形成了较为光滑的磨痕形貌,磨损程度很小,当硬度提高后可以获得更高的耐磨能力。当温度继续上升以及时间延长后,渗氮物发生了粗化的现象,引起表面硬度减小,最终降低了耐磨性。  相似文献   

10.
为了提高钻杆接头的耐磨损性能,选用由Ti、Cr、Al的氮化物、碳化物和氧化物所构成的金属陶瓷在钻杆接头材料(37CrMnMo)表面制备了多层陶瓷膜层。采用金相显微镜和扫描电子显微镜对金属陶瓷膜层的表面形貌及组织结构进行了分析。用MST3000摩擦磨损试验仪对钻杆接头材料进行旋转摩擦试验,得到表面陶瓷涂层摩擦系数的变化规律,结合摩擦副表面形貌观察和磨屑成分分析,分析了表面陶瓷涂层的耐磨性,探讨了表面陶瓷涂层的动态摩擦磨损机理。结果表明,在摩擦的初始阶段,表面陶瓷涂层摩擦系数急剧增加,随后稳定于某一定值,并在该值附近波动,波动范围逐渐增大。随着磨球被磨平,磨损形式由点面接触磨损,逐渐转换为面面接触磨损,磨斑面积不断增大。摩擦磨损开始以磨粒磨损为主,随着摩擦过程中挤压的加剧和温度的升高,磨屑发生塑性变形,形成不断增厚的转移层,覆盖于对磨面上,阻碍陶瓷涂层与对磨件的直接接触,从而减轻陶瓷涂层的摩擦磨损。  相似文献   

11.
为进一步改善镁合金微弧氧化膜的摩擦学性能,在该微弧氧化膜上,采用磁控溅射技术,在不同功率下沉积碳膜,制备碳含量不同的微弧氧化/磁控溅射复合膜。利用拉曼光谱仪检测膜层中碳结构,采用扫描电镜(SEM)和能谱(EDS)考察膜层摩擦磨损前后微观形貌、元素组成、分布及含量;应用球-盘摩擦试验机研究膜层摩擦学性能。结果表明:利用磁控溅射技术在镁合金微弧氧化膜表面沉积的碳膜,部分地封闭了微弧氧化膜微孔,减小了微孔孔径和微孔数量,降低了膜层表面粗糙度。复合膜在摩擦磨损过程中,摩擦系数较小,磨痕较窄且浅,磨损率较低,呈现出较优异的摩擦学性能。功率对微弧氧化/磁控溅射复合膜具有明显的影响,高溅射功率下制备的复合膜,由于拥有更光滑的表面,更多地具有自润滑特性的碳,摩擦系数更小,磨痕更窄且浅,磨损率更低,摩擦学性能更为优异,尤其是在高载荷下,可对基体提供更显著的保护。  相似文献   

12.
通过等离子体基离子注入(PBII)表面改性的方法,采用不同的负脉冲偏压对Ti6Al4V合金进行氮/氟离子注入,并研究了改性层的结构、硬度以及摩擦磨损性能等。利用原子力显微镜研究了改性前后的表面粗糙度变化,并用X光电子能谱分析了改性层表面结构和化学组成,还使用力学显微探针分析试样的硬度,并用球盘式摩擦磨损实验仪和扫描电镜表征了摩擦磨损性能并观察了磨痕形貌。测试结果表明:氮氟离子注入改性试样粗糙度降低,并形成了由Ti O2,Ti F3,Ti F4和Ti N等组成的改性层;改性试样的纳米硬度值较未处理基体提高;氮氟离子注入试样表现出更好的弹性回复行为;改性试样摩擦系数和磨损体积均较基体下降,磨痕形貌从粘着磨损为主转变为磨粒磨损,耐磨性改善;注氟偏压-20 k V的试样获得最理想的性能。  相似文献   

13.
利用冷喷涂技术制备Cu-20%(质量分数)Al2O3复合涂层,并在氩气保护气氛下对该复合涂层进行300℃、500℃和700℃退火热处理。采用常温干摩擦试验评价热处理对冷喷涂Cu-20%(质量分数)Al2O3复合涂层耐磨损性能的影响,并利用扫描电镜(SEM)观察涂层表面磨痕形貌。结果表明,复合涂层经退火热处理后发生了再结晶现象,涂层显微硬度降低。冷喷涂态和退火态复合涂层磨损机制不同:冷喷涂态复合涂层和低温退火热处理(300℃和500℃)下复合涂层磨损主要为磨粒磨损,700℃退火态复合涂层主要表现为疲劳磨损。  相似文献   

14.
研究了不同氧化时间下水管用Q235碳钢MAO膜的孔隙率与孔径分布状态并利测试了膜的摩擦性能。研究结果表明:在Q235碳钢MAO膜的表面形成了具有明显"火山口"外形的微观形态。当氧化时间增加后,在MAO膜表面形成的孔隙数量也不断降低,膜表面孔隙率不断减小。当氧化时间增加后,粗糙度也不断增大,膜厚度也不断增大,但增长速率不断降低。所有MAO膜试样都达到了比碳钢基体更大的摩擦系数,摩擦系数表现为随氧化时间增加而升高。在碳钢表面生长一层MAO膜可以显著减小磨损率。当氧化时间增加后,MAO膜磨损率先增大后降低。当氧化时间增加后,磨痕深度先增大后减小。  相似文献   

15.
FeCrBSi/FeS层真空辐照环境下的组织结构与摩擦学性能研究   总被引:2,自引:0,他引:2  
采用超音速等离子喷涂+低温离子渗硫技术在45#钢基体上制备了FeCrBSi/FeS复合涂层,考察了该复合涂层在大气、真空、原子氧辐照、紫外线辐照后的表面形貌、磨痕形貌及元素组成。利用真空摩擦磨损试验机分别完成了干摩擦条件下四种环境中的摩擦磨损性能测试。结果表明:复合FeCrBSi/FeS层经过原子氧及紫外线辐照后,有部分元素被氧化及化合物分解的现象,但并没有发生明显的材料性能改变以及润滑涂层的破坏。与45#钢相比,四种环境下该复合涂层均具有良好的润滑减摩效果。此研究表明,复合FeCrBSi/FeS层具有一定的抗原子氧和紫外线辐照的能力。  相似文献   

16.
研究了不同氧化时间下水管用Q235碳钢MAO膜的孔隙率与孔径分布状态并利测试了膜的摩擦性能。研究结果表明:在Q235碳钢MAO膜的表面形成了具有明显"火山口"外形的微观形态。当氧化时间增加后,在MAO膜表面形成的孔隙数量也不断降低,膜表面孔隙率不断减小。当氧化时间增加后,粗糙度也不断增大,膜厚度也不断增大,但增长速率不断降低。所有MAO膜试样都达到了比碳钢基体更大的摩擦系数,摩擦系数表现为随氧化时间增加而升高。在碳钢表面生长一层MAO膜可以显著减小磨损率。当氧化时间增加后,MAO膜磨损率先增大后降低。当氧化时间增加后,磨痕深度先增大后减小。  相似文献   

17.
使用的Al2O3对磨材料测试GC2025高硬合金的摩擦性能,并以TC4与9CrSi进行对比,通过实验测试的手段分析载荷对非自耗真空熔炼GC2025高硬刀具的滑动磨损行为的影响。研究结果表明:当载荷由2.5 N提高到20 N的过程中,GC2025高硬合金摩擦系数减小。提高载荷后,GC2025高硬合金以及对比合金均发生了磨损量的线性增大。相比较TC4合金与9CrSi合金,GC2025高硬合金更适合于大载荷环境。以较小的2.5 N载荷进行处理时,在磨痕上形成了平行于滑动方向的犁沟。逐渐增大载荷后,在试样表面形成了更多的附着物,并对犁沟造成更大范围的被覆。提高载荷后,磨屑内形成了5μm尺寸的不规则剥落物。处于2.5-10 N的载荷区间中,GC2025高硬合金磨痕深度线性增长;当载荷继续从10 N提高到20 N时,表面形成的磨痕深度保持基本恒定的状态。相对于TC4,GC2025高硬合金达到了更小的磨损率。  相似文献   

18.
采用机械混合的方法制备了用于可磨耗涂层的铝青铜聚酯复合粉末,并通过大气等离子喷涂制备了相应涂层。通过滑动摩擦实验,对比考察了该涂层与Metco 605NS涂层在不同温度下的可磨耗性能。结果表明:涂层组织中聚酯和孔隙分布均匀;在室温和200℃下,采用混合粉末制备的涂层与钛合金配副摩擦因数均在0.4左右,磨痕表面光滑平整,磨损体积较Metco 605NS涂层更大,表现出更优异的可磨耗性能;在400℃时,聚酯的烧蚀和涂层致密化,以及滑动摩擦实验采用的点接触产生的高接触应力,使得与两种涂层对磨的钛合金均产生黏着剥落和磨粒磨损,摩擦因数升高且存在较大波动。  相似文献   

19.
张世堂  赵海朝  乔玉林 《材料导报》2018,32(24):4235-4239, 4252
采用液相超声直接剥离法制备了少层石墨烯负载纳米SiO2复合材料,采用TEM对其形貌进行了表征,利用多功能往复摩擦磨损试验仪考察了少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响。通过SEM、XPS分别分析了磨损表面的形貌、元素组成及典型元素的化学状态,初步探讨了石墨烯负载纳米SiO2复合材料在水中的润滑机理。结果表明:纳米SiO2均匀分布于少层石墨烯片层表面和层间;其作为水润滑添加剂具有良好的减摩抗磨性能,这主要是由于石墨烯负载纳米SiO2复合材料在磨损表面形成的摩擦化学反应膜与纳米SiO2的自修复效应发生协同作用,抑制了Fe的氧化,并填补和修复了磨损表面,使磨痕表面的摩擦磨损减轻。  相似文献   

20.
为揭示基体表面粗糙度对MoS_(2)/Ti固体润滑薄膜摩擦磨损性能的影响规律,并探究其摩擦磨损机理,采用磁控溅射方法,在不同表面粗糙度的轴承钢基体上沉积MoS_(2)/Ti薄膜。通过划痕测试仪、X射线衍射仪、场发射扫描电子显微镜和粗糙度轮廓仪,分别评价MoS_(2)/Ti薄膜的膜基结合力、物相成分、表面微观形貌以及表面粗糙度,并采用球-盘摩擦磨损实验研究干摩擦、固体-油复合润滑和固体-脂复合润滑条件下,MoS_(2)/Ti薄膜的摩擦磨损性能。结果表明:随着基体表面粗糙度的增加,MoS_(2)/Ti薄膜的表面粗糙度逐渐增加;薄膜中(002)_(MoS_(2))和(100)_(MoS_(2))衍射峰的强度先减弱后增加;薄膜与基体的结合性能降低。当基体表面粗糙度为0.01μm时,干摩擦条件下MoS_(2)/Ti薄膜具有良好的润滑特性,平均摩擦因数为0.101,磨痕浅且小;随基体粗糙度的升高,样品的平均摩擦因数和磨损率均是先增大后减小,薄膜的主要磨损机制由磨粒磨损转变为屑片形成和破碎。当基体粗糙度较大时(R_(a)=0.26μm),分子间相互作用的影响大于机械啮合作用。采用固体-油复合润滑,高基体粗糙度的薄膜磨损表面不再出现片层剥落现象,磨痕较浅,平均摩擦因数最高可减小19%。固体-脂复合润滑条件下,样品摩擦磨损性能较差,基体粗糙度对摩擦因数的影响不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号