首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对当前齿轮故障诊断存在着准确性不高、主观性强等问题,提出了一种基于堆栈稀疏自编码器(SSAE)和softmax分类器相结合的齿轮故障诊断方法.首先,运用时域分析以及样本熵方法对风力机锥齿轮振动信号进行特征提取,其次,将提取的特征输入到SSAE中进一步学习目标数据的深层本质特征,并进行特征降维,最后使用softmax分...  相似文献   

2.
针 对 大 部 分 基 于 机 器 学 习 的 故 障 诊 断 虽 有 监 督 学 习 方 式 ,但 是 机 械 设 备 振 动 信 号 价 值 密 度 低 ,标 签 标 注 成 本大 ,且 对 于 复 合 故 障 信 号 无 法 准 确 标 注 其 状 态 的 问 题 ,提 出 了 一 种 基 于 参 数 稀 疏 自 编 码 器 的故 障 诊 断 方 法 ,该 方 法 能 够 分 析 信 号 组 成 成 分 从 而 达 到 旋 转 机 械 的 故 障 诊 断 的 目 的 。 为 了 使 编 码 结 果 更 高效 地 表 示 数 据 ,在 自 编 码 器 的 基 础 上 融 入 稀 疏 概 念 并 对 解 码 参 数 施 加 范 数 惩 罚 。 实 验 结 果 表 明 ,提 出 的 稀疏 自 编 码 器 能 够 分 解 信 号 成 分 有 效 地 诊 断 旋 转 机 械 健 康 状 态 。  相似文献   

3.
为提高堆叠稀疏降噪自编码器的性能,解决其计算复杂度高、收敛速度慢等问题,提出了一种基于堆叠边缘化稀疏降噪自编码器的滚动轴承故障诊断方法.首先,对稀疏降噪自编码器的损失函数进行边缘化处理,并结合逐层贪婪训练策略构建出SMSDAE网络;然后,将SMSDAE网络与Softmax分类器结合,得到SMSDAE-Softmax特征...  相似文献   

4.
数控机床在加工过程中,刀具磨损会对被加工零件的表面质量、尺寸精度产生巨大影响,而传统依靠切削力系数来分析刀具磨损的方法,需要在工作台上安装额外测力装置,这将干扰机床正常加工,限制被加工零件尺寸,引起加工质量降低等问题,限制了其在实际工业环境中的应用。针对上述问题,提出利用主轴电流结合深度学习网络识别铣刀磨损状态的监测方法。首先,理论论证利用主轴电流代替切削力识别刀具磨损的可行性;然后,利用压缩感知对电流信号的频域数据进行数据压缩,其中为提高网络的鲁棒性,对观测信号添加高斯白噪音;最后,将压缩后的数据输入堆栈稀疏自编码网络,利用有监督学习与无监督学习相结合的方法,提取刀具磨损所引起的特征信息,用于表征刀具磨损程度。试验结果表明,该方法可以有效对铣刀磨损程度进行识别。  相似文献   

5.
铣床齿轮箱的安全运行对保证机械设备的效率具有重要的作用,其故障诊断复杂难控。传统形式算法只是从原始振动信号中进行字典原子学习,并未从本质层面分析特征信息物理结构特性。采用低秩稀疏分解算法,并进行BCD求解对齿轮箱故障诊断开展分析。研究结果表明:特征信号已淹没到了噪声中,能够对等间隔冲击特征进行准确识别,并使特征信号信噪比由-9.152增大为4.716。表明采用稀疏低秩算法能够滤除噪声干扰,从而高效识别瞬态冲击成分。经过3次迭代后特征信号发生了奇异值快速衰减现象,具有明显稀疏特性。低秩稀疏分解信号形成的包络谱,已经实现了所有干扰频率成分以及噪声成分的滤除效果,采用低秩稀疏分解算法能够实现齿轮箱局部故障的准确诊断。  相似文献   

6.
为了提升在噪声与复杂传递路径调制下齿轮箱故障诊断的精度,提出了一种基于低阶加权与卷积稀疏学习的齿轮箱两阶段源特征恢复方法。首先利用源特征的周期性自相似性结构,设计了一种低阶加权模型,当两种波形耦合在同一频带内时,可以有效地区分调制波和干扰波。然后采用卷积滤波器直接描述传输路径的调制过程,保证了脉冲源包络的可靠恢复。同时,通过非负有界稀疏先验保证了反褶积能力。最后数值仿真与风力发电机组实验结果证明了低阶模型主能够分离聚焦特征波形,卷积稀疏学习能够突出脉冲源特征,从而有效提升齿轮箱的故障诊断精度。  相似文献   

7.
姜春雷  韩加明 《中国机械工程》2015,26(19):2619-2624
将激光自混合干涉(SMI)技术用于齿轮箱的故障检测,设计出一种新的齿轮箱故障检测传感器。采用QL65D5SA型半导体激光自混合传感器、冯哈勃2342l012CR空心杯减速电机自带的行星齿轮箱,搭建了行星齿轮箱故障SMI检测系统,并对行星轮Z1做断齿故障实验。通过对时域波形的分析,可以找到额定转频下的12个冲击点;通过对齿轮箱故障信号傅里叶频谱的分析,发现故障齿轮的啮合频率周围出现与故障齿轮特征频率和行星架转频呈整数倍关系的边带,且啮合频率处的波形幅值明显增大,这些都与齿轮副的理论振动模型相符合。  相似文献   

8.
针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最终将特征输入softmax分类器实现滚动轴承健康状况精确诊断。在动力传动故障诊断试验台采集了5类轴承故障数据进行测试。试验结果表明:SSAE算法能够有效地提取故障特征,且故障诊断效果优于传统智能诊断方法。  相似文献   

9.
传感器漂移是电子鼻系统中长期存在的问题.漂移现象会造成气体传感器的输出响应异常,使采集到样本的特征分布发生变化,进而导致分类精度明显下降.近年来学者们提出了多种传感器漂移补偿方法,但大多数针对离线场景,在实际应用中存在困难.针对这些问题,提出了一种基于稀疏自编码器的在线漂移补偿算法.该算法能够在仅使用未漂移样本的情况下...  相似文献   

10.
数据清洗过程是对锅炉设备在线监测数据预处理的一个重要环节,针对数据清洗步骤繁琐,易导致连续性数据被破坏等问题,提出一种基于混合自适应性矩估计和随机梯度下降算法优化的堆栈降噪自编码器的数据清洗方法。首先,引入自适应性矩阵估计和随机梯度下降的混合算法,以不断调整堆栈降噪自编码器模型的网络参数。其次,利用模型训练正常状态数据,获取数据的隐藏特征,得到正常状态下的重构误差。再次,用该模型检测异常状态数据,根据其重构误差分析各种类型的数据对模型的影响,并对"脏数据"和反映设备故障的异常数据进行快速分类清洗修复。通过某电厂锅炉监测数据的清洗修补实验,证明了该方法能准确识别出"脏数据",修补后的数据亦能遵循数据整体的分布规律,满足了数据的清洗要求,为后续数据分析挖掘和设备故障诊断工作奠定了良好的基础。  相似文献   

11.
现代机械设备传动系统中轴承和齿轮容易发生局部疲劳故障,单一部件典型故障引起的载荷波动极易造成其他部件继发性疲劳故障,使机械传动系统呈现多部件复合故障状态。针对齿轮箱传动系统中轴承和齿轮复合故障诊断问题,提出了基于多尺度卷积核匹配复合正则化的卷积稀疏编码(multiscalecompoundregularized convolutional sparse coding,简称MCRCSC)分离诊断算法。首先,根据齿轮箱轴承和齿轮典型复合故障所呈现出的稀疏性与尺度特性进行了模型假设;其次,依据不同故障的信号尺度特性与分布特点提出了多尺度卷积核与复合正则化约束的概念,并建立了多成分卷积分离模型;最后,通过交替方向乘子(alternating direction method of multipliers,简称ADMM)优化架构将频域转化后的优化方程分解为子问题进行交替求解,对分离卷积重构后的故障信号进行谱分析得到对应典型故障频率分布。实际齿轮箱故障模拟实验表明,所提算法在随机噪声和谐波干扰下仍具有优良故障分离诊断能力。  相似文献   

12.
针对滚动轴承故障严重程度与复合故障难以准确识别的问题,提出了一个基于提升双树复小波包(Lifting Dual-Tree Complex Wavelet Packet,LDTCWP)和深度小波自编码器(Deep WaveletAuto-Encoder,DWAE)的轴承故障诊断方法。首先,使用迁移学习扩展目标数据量;其次,对轴承振动数据进行3层提升双数复小波包分解,分别计算各子频带信号的样本熵、排列熵和能量矩,作为初始特征向量;最后,将初始特征向量输入DWAE,进行二次特征提取并实现故障诊断。实验结果表明,该方法能有效地对滚动轴承进行多种故障类型和多种故障程度的识别,与传统机器学习方法相比,在目标数据较少的情况下也具有较强的泛化能力、特征提取能力和识别能力。  相似文献   

13.
李长文  李鹏  丁华 《机械传动》2022,(6):134-140
为了提高齿轮箱故障诊断的准确率,准确表达齿轮箱的健康状态,结合深度学习算法,提出了一种用于齿轮故障诊断的GAF-inceptionResNet模型。该模型可以直接将原始一维振动信号经过格拉姆角场变换后形成图像作为模型的输入,通过Stem-block、残差Inception、残差模块和分类层相互连接。残差Inception网络能够拓宽网络深度,提升训练时长及准确率;残差模块利用恒等映射可以大幅度降低模型的训练难度。因此,该模型可有效地挖掘信号特征之间的信息,使模型的特征学习能力增强,从而提高准确率,精准确定故障。实验结果表明,该模型能够达到99.59%的故障诊断精度,有效实现齿轮箱良好的故障识别与分类。  相似文献   

14.
智能电网的发展使得电网获取的数据逐渐增多,为了从多维大数据中获取有用信息并对短期内电力负荷进行准确的预测,提出了一种基于改进的深度稀疏自编码器(IDSAE)降维及果蝇优化算法(FOA)优化极限学习机(ELM)的短期电力负荷预测方法。将L1正则化加入到深度稀疏自编码器(DSAE)中能够诱导出更好的稀疏性,用IDSAE对影响电力负荷预测精度的高维数据进行特征降维,消除了指标间的多重共线性,实现高维数据向低维空间的压缩编码。采用FOA优化算法优化ELM的权值和阈值,得到最优值,能够克服因极限学习机随机选择权值和阈值导致预测精度低的缺点。首先将气象因素通过IDSAE降维,得到稀疏后的综合气象因素特征指标,协同电力负荷数据作为FOA优化的ELM预测模型的输入向量进行电力负荷预测。通过与DSAE-FOAELM、DSAE-ELM和IDSAE-ELM等模型的对比实验,证明了提出的预测模型能有效提高预测精度,经计算得出预测精度提升大约8%。  相似文献   

15.
一维振动信号常常被用于齿轮箱的监测与故障诊断中,使得能及时地对齿轮箱维护以减少损失。因此,从一维振动信号中提取出关键故障特征决定了故障诊断模型的准确性与可靠性。典型的深度神经网络(deep neural network, DNN),如卷积神经网络已经在故障诊断中表现出良好的性能并得到了广泛的应用,但其监督式训练方式往往需要大量的标签数据而限制了其可应用性。因此,提出一种新的深度神经网络模型,一维残差卷积自编码器(1-dimension residual convolutional auto-encoder,1DRCAE),成功应用于振动信号的无监督学习及故障特征提取,显著提高了齿轮箱的故障诊断率。首先,提出了一维卷积层与自编码器的有效集成方法,形成了深度一维卷积自编码器;其次,引入残差学习机制训练一维卷积自编码器,实现对一维振动信号有效地特征提取;最后,基于编码器提取的特征,使用少量标签数据进行分类微调实现齿轮箱故障模式识别。通过齿轮箱试验台采集的传感器数据进行实验验证表明,这种无监督学习方法具有良好的去噪能力和故障特征提取能力,其特征提取效果好于典型的深度神经网络,如深度置信网络(D...  相似文献   

16.
针对机械故障诊断中专业知识的不足会影响手工特征提取效果的问题,提出了应用栈式自编码器(Stacked autoencoder,SAE)直接从复杂的原始信号中逐层提取深度特征。通过逐层预训练、微调等操作来训练栈式自编码器的提取特征能力,并通过在网络中的每一个隐含层前引入Dropout正则化层、批规范层来防止过拟合,加速收敛。针对SAE网络中的超参数取值问题,首先通过一系列对照试验得到各超参数合适的取值范围,然后在该范围内进一步提出了使用和声搜索算法(Harmony search,HS)优化超参数,达到自适应调整网络结构,提高特征提取能力的效果。试验结果表明,当使用包含七种气门健康状态的柴油机振动数据测试时,所提出的HS-SAE方法的故障分类精度优于SAE和多种传统故障诊断算法。  相似文献   

17.
当齿轮箱内旋转零件发生故障时,其振动信号中的故障脉冲成分易被箱体中其他旋转部件的谐波信号和背景噪声所淹没,故障特征难以被有效提取。针对这一问题,提出了基于信号共振稀疏分解和最大相关峭度解卷积的故障诊断方法。该方法首先通过信号共振稀疏分解将信号中的低共振冲击成分从谐波分量和噪声中分离,然后对低共振分量进行最大相关峭度解卷积计算,进一步突出低共振分量中的周期脉冲成分,最后通过包络谱分析进行故障诊断。算法仿真、实验分析和工程应用结果表明,该方法能够有效提取强噪声信号中的周期性冲击成分,凸显故障特征,从而提供准确可靠的诊断结果。  相似文献   

18.
为了解决齿轮箱的故障诊断问题,提出了一种基于最小熵反褶积(Minimum Entropy Deconvolution,MED)和支持向量机(Support Vector Machine,SVM)的齿轮箱故障诊断方法。该方法首先对齿轮箱振动加速度信号进行MED降噪处理,对降噪后的信号在幅域、频域和能量域进行特征参量提取,建立特征向量,以此作为输入建立多分类支持向量机,通过交叉验证方法优化模型参数,判断齿轮箱的故障类型。实测齿轮箱振动信号的故障诊断结果表明,该方法能有效识别多种齿轮和轴承的故障类型,优化模型参,数有助于提高故障识别准确率。  相似文献   

19.
介绍了利用虚拟仪器技术进行齿轮箱故障诊断系统设计的原理和方法。硬件系统由加速度传感器、信号调理卡、数据采集卡和PC机组成。以LabVIEW为平台设计了界面友好的软件系统,采用"小波去噪+EEMD分解"的非平稳信号处理方法进行故障信号的特征提取。运行结果表明,该系统能快速准确地对齿轮箱故障进行诊断,具有良好的应用前景。  相似文献   

20.
在非拆卸状态下,传统的齿轮箱故障诊断手段往往依赖于专家的经验判断。但是,由于齿轮箱是一种非常复杂的传动机构,所以专家的经验并不能解决所有的诊断问题。本文应用Elman神经网络对拖拉机齿轮箱进行故障诊断,经过试验,表明方法切实有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号