首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对国产化大抽速分子泵测试需求,研制出基于CF400接口分子泵抽速测试装置。采用量程为10~10-9 Pam3/s的复合型标准气体流量计提供可变的标准流量,仅用流量法实现了测试罩内气体压力处于10-1~10-7 Pa范围的抽速测试,而传统测试方法采用标准流导法和流量法相结合实现该范围的测试;装置集成了在线真空校准功能,用磁悬浮转子真空计作为参考标准,实现在10-1~10-4 Pa范围内对测试罩内气体压力的直接测量及副参考标准电离真空计的在线校准。研制的装置与原有测试方法相比较优点主要为:采用一种方法实现了分子泵抽速测试;在线校准技术解决了原有测量过程电离真空计灵敏度系数发生变化引起测量结果出现的较大偏差;实现对不同气体抽速的直接测量,避免原方法只能给出等效氮气测试结果的不足。实验结果证明,装置对分子泵抽速的测试范围为3000~5000 L/s,测量结果的合成标准不确定度为2.2%~4.4%。  相似文献   

2.
郭宁  邱家稳  江豪成 《真空》2007,44(2):15-17
在不同Xe气流量下测量了F-400/3500和F-250/1500分子泵对Xe气的抽速,指出分子泵对Xe气的抽速是其对N2抽速的0.6~0.8倍。这一折算系数和泵的型号有关,和泵口真空度也相关。  相似文献   

3.
本工作研制了一台采用流量计测量复合分子泵抽速的装置.本装置由测试台车、机柜、计算机自动控制和数据采集处理系统三部分组成.选用3个高精度流量计,满量程分别为1000 sccm、100 sccm和10 sccm,并联组成流量计组件用于测量输入气体的流量,选用高精度的复合真空计测量真空测试罩内气压.抽速测试结果显示,一台1200 L/s的复合分子泵N2抽速重复测量5次,14个气压测试点对应的抽速的最大相对标准偏差小于2%,重复性好.抽速测量的误差主要由流量计和真空计的系统误差决定.采用流量计测量一台分子泵在气压2.00×10-3 Pa~2.00 Pa范围的抽速,测量时间20 min以内.  相似文献   

4.
针对当前分子泵抽速测试装置自动化程度低,压强实验点难以调节等问题,设计出一套分子泵抽速自动测试软件,以LabVIEW为软件开发平台,采用RS485通信实现对真空计、气体质量流量控制计、温度控制仪的数据采集和设备控制;采用PID控制方法调节气体质量流量控制计的通气量,实现对压强实验点的稳定控制;采用继电型PID参数自整定技术提高算法对系统的适应性、该软件提高了分子泵抽速测量工作中数据采集和压强调节的自动化程度,减少了人员操作对测量过程的影响,使测试过程更加科学规范,对分子泵抽速测试技术研究和应用具有一定参考价值。  相似文献   

5.
针对当前普遍采用的分子泵抽气性能测试方法与程序,讨论用升压法测量涡轮分子泵压缩比时实测计算值与真实值之间客观存在的差异,并讨论用其测量复合分子泵压缩比的可行性;分析用滴管流量计法测量分子泵(涡轮分子泵和复合分子泵)抽速时可能产生的直接或间接的误差,并提出消除此类误差的基本思路,基于此思路,在实际工程中可得到科学可靠的更能客观反映产品性能的测试数据.  相似文献   

6.
本文记述了抽速为5-20米^3/秒(对He)的高可靠性涡轮分子泵及其参数,经系列泵根据双流层原理制成,其极限压强大的约为5×10^-8Pa;压缩比为(0.6-2.1)×10^4(对H2)和(0.9~3.2)×10^5(对He)溅余气体的主要成分是氢气,同时,此原采用了动密封以防来自轴承装置的油渗入被抽空腔内。油通过轴承被排出,在泵设计中对其入口法兰不同位置进行了设想(角度为45°)此系列泵对突然性  相似文献   

7.
叙述了2×10 ̄5L/s钛升华泵的一种抽速测试方法,介绍了实验原理和测试装置设计。  相似文献   

8.
介绍一种新颖拖动分子泵,其抽速达到传统拖动分子泵的30倍左右,达到了涡轮分子泵的水平。该泵高压强(1-100Pa)性能明显优于涡轮分子泵。泵的结构则简单得多。  相似文献   

9.
按抽气过程推出了溅射离子泵的抽速公式。实验研究了阳极结构、阴极材料对提高抽速的作用。通过离子泵抽氩清洗后抽速提高现象的分析研究.证实了阴极材料表层成分对离子泵抽速有几倍的影响;钛阴极的泵在抽氮气达到稳定值后,阴极表层即盖满 TiN,而泵的正常抽速是离子溅射 TiN 生成的钛原子在阳极表面抽气提供的。研究表明,理想的离子泵阴极材料不仅应当溅射率高,溅射膜有高的吸气性能,而且应对入射的被抽气体原子有足够高的扩散能力。  相似文献   

10.
冯葵 《真空》2004,41(1):39-40
探讨了用定容法测量微型离子泵抽速的装置及程序.并给出了抽速测量不确定度的简化评估.  相似文献   

11.
介绍一种新颖拖动分子系,其抽速达到传统拖动分子泵的30倍左右,达到了涡轮分子泵的水平。该泵高压强(1~100Pa)性能明显优于涡轮分子泵。泵的结构则简单得多。  相似文献   

12.
爪型泵的抽速计算及其平衡的研究   总被引:1,自引:1,他引:0  
姚民生  平功长 《真空》1989,(6):14-19
在爪型泵型线研究[1]的基础上,本文推导出该泵的理论抽速计算式,为了对爪形 转子的动平衡进行分析与计算,本文又给出了该转子的质心计算式。  相似文献   

13.
进气口导流叶列对M型分子/增压泵抽速的影响   总被引:3,自引:0,他引:3  
分子/增压泵抽气槽的入口流导是限制抽速的主要原因.抽气槽进气口增设一组百叶窗式导流叶列,可以显著减少入口流导的影响,大幅度提高抽气槽的抽速.本文分析了导流叶列的工作机理,提出了叶列参数优化方法,优化后的抽速可以提高20%.实测结果与理论值符合得很好.  相似文献   

14.
本文对往复真空泵抽速测试装置中的喷咀几何型线,抽速计算公式中的修正系数——流量系数α、气体膨胀系数ε作了理论的分析。  相似文献   

15.
陈奇  陈益林 《真空》1993,(2):12-15
本文运用气体动力学的理论,重点从结构上分析了影响KT-150型扩散泵的抽速因素。对设计其他类型的扩散泵具有一定的参考作用。  相似文献   

16.
龚建华  郑永 《真空》2000,(2):7-9
本文运用蒙特卡洛方法,通过同口径的凸腔泵和直腔泵的对比研究,确认凸腔型扩散泵由于其蒸汽射流界面增大以及泵壳的特殊形状使得泵的抽速系数比直腔型扩散泵提高。计算结果符合一般规律。  相似文献   

17.
储继国 《真空》1989,(2):58-60
本文分析了涡轮分子泵和拖动分子泵抽气机理的不同物理图象,并论证了短叶片涡轮分子泵的抽气作用是这二种分子泵抽气机理同时作用的结果,从而,这种泵具有涡轮分子泵和拖动分子泵的共同优点。  相似文献   

18.
针对中性束注入等离子体加热过程中的高真空条件要求,借助于国际合作方式,我们为HL-2A 装置中性束注入器设计了一种大吸附面积的高抽速钛泵系统.钛泵系统抽速设计值为30万L/s,由两台大泵和一台小泵组成,两台大钛泵分别置于注入器主真空室左右两侧,小钛泵置于注入器副真空室右侧.运行实验结果表明,钛泵完全满足HL-2A中性束注入实验的要求.本文主要介绍了钛泵的工程设计和实验运行结果,简要分析了HL-2A装置中性束加热系统高抽速钛泵的运行特点.  相似文献   

19.
夏正勋 《真空》1991,(2):19-31
三十多年来,随着蒸汽流泵,特别是油扩散泵技术的进展,国外和国内围绕蒸汽返流这个课题做了不少的试验。发表了许多研究文章,分析了蒸汽返流来源,提出了减少返流的措施。但是,现在尚没有能够从理论上对返流问题给予定量的解释。此文根据气体分子热运动的麦氏分布律,推导出了离开蒸汽射流的油蒸汽分子速率的计算式,利用角系数概念,计算了喷咀出口平面以上的泵体内壁和测试罩内壁各表面上的返流率数值,证明了油蒸汽分子对表面需要碰撞十数次才能被俘获。由这些计算,提出了蒸汽返流模型。此外,又导出了由于蒸汽返流对抽速减小量Sb的计算式,分析了蒸汽返流与极限压力的关系,最后,还提出了减少蒸汽返流的一些措施。  相似文献   

20.
根据潘宁放电机理,导出溅射离子泵抽速的理论公式。讨论了抽速对各种放电参数的依赖关系。计算了离子泵对N2和CO的抽速。计算结果和实验测试以及经验公式的结果有较好的符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号