首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During evolution, chloroplasts have relinquished the majority of their genes to the nucleus. The products of transferred genes are imported into the organelle with the help of an import machinery that is distributed across the inner and outer plastid membranes. The evolutionary origin of this machinery is puzzling because, in the putative predecessors, the cyanobacteria, the outer two membranes, the plasma membrane, and the lipopolysaccharide layer lack a functionally similar protein import system. A 75-kDa protein-conducting channel in the outer envelope of pea chloroplasts, Toc75, shares approximately 22% amino acid identity to a similarly sized protein, designated SynToc75, encoded in the Synechocystis PCC6803 genome. Here we show that SynToc75 is located in the outer membrane (lipopolysaccharide layer) of Synechocystis PCC6803 and that SynToc75 forms a voltage-gated, high conductance channel with a high affinity for polyamines and peptides in reconstituted liposomes. These findings suggest that a component of the chloroplast protein import system, Toc75, was recruited from a preexisting channel-forming protein of the cyanobacterial outer membrane. Furthermore, the presence of a protein in the chloroplastic outer envelope homologous to a cyanobacterial protein provides support for the prokaryotic nature of this chloroplastic membrane.  相似文献   

2.
The amino-terminal transit sequences of two preproteins destined for the chloroplast inner envelope membrane show similarities to mitochondrial presequences in the prevalence of positive charges and the potential formation of an amphipathic alpha-helix. We studied if these preproteins could be imported into mitochondria and found a low, yet significant import into isolated plant mitochondria. The plant mitochondria were previously shown not to import precursors of chloroplast stromal or thylakoidal proteins. To analyze the specificity of import into mitochondria we used the established import systems of fungal mitochondria. The envelope preproteins were efficiently imported into Saccharomyces cerevisiae or Neurospora crassa mitochondria. Their import showed the characteristics of specific mitochondrial protein uptake, including a requirement for the main receptor MOM19 (mitochondrial outer membrane protein of 19 kDa) and a membrane potential across the inner membrane, and depended on the presence of the chloroplast transit sequence. We conclude that some chloroplast transit sequences contain sufficient information for specific interaction with mitochondrial import receptors (at least from fungal sources).  相似文献   

3.
Two components of the chloroplast envelope, Tic20 and Tic22, were previously identified as candidates for components of the general protein import machinery by their ability to covalently cross-link to nuclear-encoded preproteins trapped at an intermediate stage in import across the envelope (Kouranov, A., and D.J. Schnell. 1997. J. Cell Biol. 139:1677-1685). We have determined the primary structures of Tic20 and Tic22 and investigated their localization and association within the chloroplast envelope. Tic20 is a 20-kD integral membrane component of the inner envelope membrane. In contrast, Tic22 is a 22-kD protein that is located in the intermembrane space between the outer and inner envelope membranes and is peripherally associated with the outer face of the inner membrane. Tic20, Tic22, and a third inner membrane import component, Tic110, associate with import components of the outer envelope membrane. Preprotein import intermediates quantitatively associate with this outer/inner membrane supercomplex, providing evidence that the complex corresponds to envelope contact sites that mediate direct transport of preproteins from the cytoplasm to the stromal compartment. On the basis of these results, we propose that Tic20 and Tic22 are core components of the protein translocon of the inner envelope membrane of chloroplasts.  相似文献   

4.
1. The effects of mexiletine were evaluated on the ATP-sensitive K+ channel (K(ATP)) of rat skeletal muscle fibres using patch clamp techniques. The effects of mexiletine were studied on macropatch currents 20 s (maximally activated), 8 min (early stage of rundown) and 15 min (late stage of rundown) after excision in the absence or in the presence of internal ADP (50-100 microM) or UDP (500 microM). In addition, the effects of mexiletine were tested on single channel. 2. In the absence of ADP and UDP, mexiletine inhibited the current through maximally activated channels with an IC50 of -5.58+/-0.3 M. Nucleoside diphosphates shifted the current versus mexiletine concentration relationship to the right on the log concentration axis. UDP (500 microM) was more efficacious than ADP (50-100 microM) in this effect. 3. At the early stage of rundown, the sensitivity of the channel to mexiletine was reduced and nucleoside diphosphates, particularly UDP, antagonized the effect of mexiletine. At the late stage of rundown, mexiletine did not affect the currents. 4. At the single channel level, 1 microM mexiletine reduced the mean burst duration by 63% and prolonged the arithmetic mean closed time intervals between the bursts of openings without altering the open time and closed time distributions. Mexiletine did not affect the single channel conductance. 5. These results show that in skeletal muscle, mexiletine is a state-dependent K(ATP) channel inhibitor which either acts through the nucleotide binding site or a site allosterically coupled to it.  相似文献   

5.
6.
The effect of protein kinase C (C-kinase) on the Ca(2+)-activated K+ channel (KCa-channel) was studied in cultured smooth muscle cells from porcine coronary artery by the patch-clamp technique. In cell-attached patches, bath application of phorbol 12-myristate 13-acetate (PMA, 1 microM), a C-kinase activator, significantly decreased the open probability of the activated KCa-channel in the presence of the calcium ionophore A23187 (20 microM), which increases intracellular Ca2+. This decrease in the open probability was reversed by subsequent application of staurosporine (1 nM), a C-kinase inhibitor. Application of 1-oleoyl-2-acetylglycerol (OAG, 30 microM) or 1,2-dioctanoylglycerol (DG8; 30 microM), activators of C-kinase, also inhibited KCa-channel activation by A23187, and these inhibitions were also reversed by staurosporine. PMA (1 microM) also inhibited KCa-channel activation by dibutylyl cyclic AMP (db-cAMP, 2 mM) or caffeine (30 mM). In inside-out patches, bath application of the C-kinase fraction from rat brain in the presence of ATP (1 mM) and PMA (1 microM) markedly inhibited the KCa-channel. These results indicate that activation of C-kinase inhibits the KCa-channel and may cause membrane depolarization and vascular contraction.  相似文献   

7.
Toc36 is a family of 44-kDa envelope polypeptides previously identified as components of the chloroplast protein import apparatus by virtue of their close physical proximity to translocating proteins. An indication of their function thus remains at large. A heterologous in vivo approach for studying the function of Toc36 was developed in this study by introducing a member of Toc36 into E. coli to assess its effect on bacterial protein translocation. The presence of Toc36 enhances the translocation of two bacterial periplasmic proteins in a manner resembling the chloroplast system. Translocation of the two bacterial periplasmic proteins was less sensitive to sodium azide, resembling more the azide-insensitive nature of the chloroplast protein import process. Mutated Toc36 proteins were not capable of causing the same effect as that observed for unaltered Toc36. Toc36 was also capable of complementing bacterial strains with temperature-sensitive secA mutations that affected protein translocation. The combined results provide evidence that Toc36 plays a central role in the chloroplast protein translocation process.  相似文献   

8.
Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (PK) was 1.3 x 10(-13) cm x s(-1). An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (Po) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about -60 mV, and the activation midpoint was -2 mV. Po decreased noticeably at 50 microM internal adenosine 5'-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 microM. Internal application of 5'-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased Po. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 microM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current.  相似文献   

9.
Elevation of intracellular cAMP levels in Necturus gallbladder epithelium (NGB) induces an apical membrane Cl- conductance (GaCl). Its characteristics (i.e., magnitude, anion selectivity, and block) were studied with intracellular microelectrode techniques. Under control conditions, the apical membrane conductance (Ga) was 0.17 mS.cm-2, primarily ascribable to GaK. With elevation of cell cAMP to maximum levels, Ga increased to 6.7 mS.cm-2 and became anion selective, with the permeability sequence SCN- > NO3- > I- > Br- > Cl- > SO4(2-) approximately gluconate approximately cyclamate. GaCl was not affected by the putative Cl- channel blockers Cu2+, DIDS, DNDS, DPC, furosemide, IAA-94, MK-196, NPPB, SITS, verapamil, and glibenclamide. To characterize the cAMP-activated Cl- channels, patch-clamp studies were conducted on the apical membrane of enzyme-treated gallbladders or on dissociated cells from tissues exposed to both theophylline and forskolin. Two kinds of Cl- channels were found. With approximately 100 mM Cl- in both bath and pipette, the most frequent channel had a linear current-voltage relationship with a slope conductance of approximately 10 pS. The less frequent channel was outward rectifying with slope conductances of approximately 10 and 20 pS at -40 and 40 mV, respectively. The Cl- channels colocalized with apical maxi-K+ channels in 70% of the patches. The open probability (Po) of both kinds of Cl- channels was variable from patch to patch (0.3 on average) and insensitive to [Ca2+], membrane voltage, and pH. The channel density (approximately 0.3/patch) was one to two orders of magnitude less than that required to account for GaCl. However, addition of 250 U/ml protein kinase A plus 1 mM ATP to the cytosolic side of excised patches increased the density of the linear 10-pS Cl- channels more than 10-fold to four per patch and the mean Po to 0.5, close to expectations from GaCl. The permeability sequence and blocker insensitivity of the PKA-activated channels were identical to those of the apical membrane. These data strongly suggest that 10-pS Cl- channels are responsible for the cAMP-induced increase in apical membrane conductance of NGB epithelium.  相似文献   

10.
Many thylakoid proteins are cytosolically synthesized and have to cross the two chloroplast envelope membranes as well as the thylakoid membrane en route to their functional locations. In order to investigate the localization pathways of these proteins, we over-expressed precursor proteins in Escherichia coli and used them in competition studies. Competition was conducted for import into the chloroplast and for transport into or across isolated thylakoids. We also developed a novel in organello method whereby competition for thylakoid transport occurred within intact chloroplasts. Import of all precursors into chloroplasts was similarly inhibited by saturating concentrations of the precursor to the OE23 protein. In contrast, competition for thylakoid transport revealed three distinct precursor specificity groups. Lumen-resident proteins OE23 and OE17 constitute one group, lumenal proteins plastocyanin and OE33 a second, and the membrane protein LHCP a third. The specificity determined by competition correlates with previously determined protein-specific energy requirements for thylakoid transport. Taken together, these results suggest that thylakoid precursor proteins are imported into chloroplasts on a common import apparatus, whereupon they enter one of several precursor-specific thylakoid transport pathways.  相似文献   

11.
We have begun to take a genetic approach to study chloroplast protein import in Chlamydomonas reinhardtii by creating deletions in the transit peptide of the gamma-subunit of chloroplast ATPase-coupling factor 1 (CF1-gamma, encoded by AtpC) and testing their effects in vivo by transforming the altered genes into an atpC mutant, and in vitro by importing mutant precursors into isolated C. reinhardtii chloroplasts. Deletions that removed 20 or 23 amino acid residues from the center of the transit peptide reduced in vitro import to an undetectable level but did not affect CF1-gamma accumulation in vivo. The CF1-gamma transit peptide does have an in vivo stroma-targeting function, since chimeric genes in which the stroma-targeting domain of the plastocyanin transit peptide was replaced by the AtpC transit peptide-coding region allowed plastocyanin to accumulate in vivo. To determine whether the transit peptide deletions were impaired in in vivo stroma targeting, mutant and wild-type AtpC transit peptide-coding regions were fused to the bacterial ble gene, which confers bleomycin resistance. Although 25% of the wild-type fusion protein was associated with chloroplasts, proteins with transit peptide deletions remained almost entirely cytosolic. These results suggest that even severely impaired in vivo chloroplast protein import probably does not limit the accumulation of CF1-gamma.  相似文献   

12.
1. The direct effects of diazoxide on mitochondrial membrane potential, Ca2+ transport, oxygen consumption and ATP generation were investigated in mouse pancreatic B-cells and rat liver mitochondria. 2. Diazoxide, at concentrations commonly used to open adenosine 5'-triphosphate (ATP)-dependent K+-channels (K(ATP) channels) in pancreatic B-cells (100 to 1000 microM), decreased mitochondrial membrane potential in mouse intact perifused B-cells, as evidenced by an increase of rhodamine 123 fluorescence. This reversible decrease of membrane potential occurred at non-stimulating (5 mM) and stimulating (20 mM) glucose concentrations. 3. A decrease of mitochondrial membrane potential in perifused B-cells was also caused by pinacidil, but no effect could be seen with levcromakalim (500 microM each). 4. Measurements by a tetraphenylphosphonium-sensitive electrode of the membrane potential of rat isolated liver mitochondria confirmed that diazoxide decreased mitochondrial membrane potential by a direct action. Pretreatment with glibenclamide (2 microM) did not antagonize the effects of diazoxide. 5. In Fura 2-loaded B-cells perifused with the Ca2+ channel blocker, D 600, a moderate, reversible increase of intracellular Ca2+ concentration could be seen in response to 500 microM diazoxide. This intracellular Ca2+ mobilization may be due to mitochondrial Ca2+ release, since the reduction of membrane potential of isolated liver mitochondria by diazoxide was accompanied by an accelerated release of Ca2+ stored in the mitochondria. 6. In the presence of 500 microM diazoxide, ATP content of pancreatic islets incubated in 20 mM glucose for 30 min was significantly decreased by 29%. However, insulin secretion from mouse perifused islets induced by 40 mM K+ in the presence of 10 mM glucose was not inhibited by 500 microM diazoxide, suggesting that the energy-dependent processes of insulin secretion distal to Ca2+ influx were not affected by diazoxide at this concentration. 7. The effects of diazoxide on oxygen consumption and ATP production of liver mitochondria varied depending on the respiratory substrates (5 mM succinate, 10 mM alpha-ketoisocaproic acid, 2 mM tetramethyl phenylenediamine plus 5 mM ascorbic acid), indicating an inhibition of respiratory chain complex II. Pinacidil, but not levcromakalim, inhibited alpha-ketoisocaproic acid-fuelled ATP production. 8. In conclusion, diazoxide directly affects mitochondrial energy metabolism, which may be of relevance for stimulus-secretion coupling in pancreatic B-cells.  相似文献   

13.
14.
Successful import of hundreds of nucleus-encoded proteins is essential for chloroplast biogenesis. The import of cytosolic precursor proteins relies on the Toc- (translocon at the outer chloroplast membrane) and Tic- (translocon at the inner chloroplast membrane) complexes. In Arabidopsis thaliana,precursor recognition is mainly mediated by outer membrane receptors belonging to two gene families: Toc34/33 and Toc159/132/120/90. The role in import and precursor selectivity of these receptors has been intensively studied,but the function of Toc90 still remains unclear. Here,we report the ability of Toc90 to support the import of Toc159 client proteins. We show that the overexpression of Toc90 partially complements the albino knockout of Toc159 and restores photoautotrophic growth. Several lines of evidence including proteome profiling demonstrate the import and accumulation of proteins essential for chloroplast biogenesis and functionality.  相似文献   

15.
It has previously been found that Tic110, an integral protein of the chloroplast inner envelope membrane, is a component of the chloroplastic protein import apparatus. However, conflicting reports exist concerning the topology of this protein within the inner envelope membrane. In this report, we provide evidence that indicates that the large (>90-kDa) hydrophilic domain of Tic110 is localized within the chloroplast stroma. Trypsin, a protease that cannot penetrate the permeability barrier of the inner envelope membrane, degrades neither Tic110 nor other proteins exposed to the stromal compartment but is able to digest proteins exposed to the intermembrane space between the two envelope membranes. Previous reports indicating that trypsin is able to degrade Tic110 were influenced by incomplete quenching of protease activity. When trypsin is not sufficiently quenched, it is able to digest Tic110, but only after chloroplasts have been ruptured. It is therefore necessary to employ adequate quenching protocols, such as the one reported here, whenever trypsin is utilized as an analytical tool. Based on a stromal localization for the majority of Tic110, we propose that this protein may be involved in the recruitment of stromal factors, possibly molecular chaperones, to the translocation apparatus during protein import.  相似文献   

16.
Protein kinase A (PKA) stimulates Cl secretion by activating the cystic fibrosis transmembrane conductance regulator (CFTR), a tightly regulated Cl- channel in the apical membrane of many secretory epithelia. The CFTR channel is also modulated by protein kinase C (PKC), but the regulatory mechanisms are poorly understood. Here we present evidence that PKA-mediated phosphorylation alone is not a sufficient stimulus to open the CFTR chloride channel in the presence of MgATP; constitutive PKC phosphorylation is essential for acute activation of CFTR by PKA. When patches were excised from transfected Chinese hamster ovary cells, CFTR responses to PKA became progressively smaller with time and eventually disappeared. This decline in PKA responsiveness did not occur in the presence of exogenous PKC and was reversed by the addition of PKC to channels that had become refractory to PKA. PKC enhanced PKA stimulation of open probability without increasing the number of functional channels. Short-term pretreatment of cells with the PKC inhibitor chelerythrine (1 microM) reduced the channel activity that could be elicited by forskolin in cell-attached patches. Moreover, in whole cell patches, acute stimulation of CFTR currents by chlorophenylthio-cAMP was abolished by two chemically unrelated PKC inhibitors, although an abrupt, partial activation was observed after a delay of >15 min. Modulation by PKC was most pronounced when basal PKC phosphorylation was reduced by briefly preincubating cells with chelerythrine. Constitutive PKC phosphorylation in unstimulated cells permits the maximum elevation of open probability by PKA to reach a level that is approximately 60% of that attained during in vitro exposure to both kinases. Differences in basal PKC activity may contribute to the variable cAMP responsiveness of CFTR channels in different cell types.  相似文献   

17.
1. Effects on the pinacidil-induced outward current of inhibitors of tyrosine kinases and phosphatases were investigated by use of a patch-clamp method in smooth muscle cells of the rabbit portal vein. 2. A specific tyrosine kinase inhibitor, genistein, inhibited the pinacidil-induced current in a concentration-dependent manner with an IC50 of 5.5 microM. Superfusion of Ca2+-free solution did not affect this inhibitory effect of genistein. At higher concentrations, genistein inhibited the voltage-dependent Ba2+ and K+ currents with IC50 values of > 100 microM and 75 microM respectively. Tyrphostin B46 (30 microM), a tyrosine kinase inhibitor, also inhibited the pinacidil-induced current by 70% of the control. 3. Sodium orthovanadate (100 microM), an inhibitor of tyrosine phosphatase, slightly but significantly enhanced both the pinacidil-induced and delayed rectifier K+ currents. Daidzein (100 microM), an inactive analogue of genistein, did not inhibit these currents. 4. Neither herbimycin A (1 microM), lavendustin A (30 microM), tyrphostin 23 (10 microM), which are also tyrosine kinase inhibitors, nor wortmannin (10 microM), a phosphatidylinositol 3-kinase inhibitor, had an effect on either the pinacidil-induced or delayed rectifier K+ currents. Epidermal growth factor (EGF; 1 microg ml(-1)) did not induce an outward current or enhance the pinacidil-induced current. 5. Pinacidil alone, in the cell-attached configuration, or pinacidil with GDP, in the inside-out configuration, activated a 42 pS channel in the smooth muscle cells of the rabbit portal vein. Genistein (30 microM) reduced the channel's open probability without inducing a change in unitary conductance at any holding potential (-30 to +20 mV). 6. In the inside-out configuration, genistein at 30 microM did not change the mean channel open time, but reduced the burst duration. At 100 microM genistein abolished channel opening. The inhibitory potencies with which 30 and 100 microM genistein acted on the unitary current of the ATP-sensitive K+ channel were similar to those seen in the whole-cell voltage-clamp configuration. 7. Although direct inhibitory actions of genistein on the ATP-sensitive K+ channels are not ruled out, our results suggest that a protein tyrosine kinase may play a role in the regulation of ATP-sensitive K+ channel activity in the rabbit portal vein.  相似文献   

18.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

19.
We describe ATP-dependent inhibition of the 75-105-pS (in 250 mM Cl-) anion channel (SCl) from the sarcoplasmic reticulum (SR) of rabbit skeletal muscle. In addition to activation by Ca2+ and voltage, inhibition by ATP provides a further mechanism for regulating SCl channel activity in vivo. Inhibition by the nonhydrolyzable ATP analog 5'-adenylylimidodiphosphate (AMP-PNP) ruled out a phosphorylation mechanism. Cytoplasmic ATP (approximately 1 mM) inhibited only when Cl- flowed from cytoplasm to lumen, regardless of membrane voltage. Flux in the opposite direction was not inhibited by 9 mM ATP. Thus ATP causes true, current rectification in SCl channels. Inhibition by cytoplasmic ATP was also voltage dependent, having a K(I) of 0.4-1 mM at -40 mV (Hill coefficient approximately 2), which increased at more negative potentials. Luminal ATP inhibited with a K(I) of approximately 2 mM at +40 mV, and showed no block at negative voltages. Hidden Markov model analysis revealed that ATP inhibition 1) reduced mean open times without altering the maximum channel amplitude, 2) was mediated by a novel, single, voltage-independent closed state (approximately 1 ms), and 3) was much less potent on lower conductance substates than the higher conductance states. Therefore, the SCl channel is unlikely to pass Cl- from cytoplasm to SR lumen in vivo, and balance electrogenic Ca2+ uptake as previously suggested. Possible roles for the SCl channel in the transport of other anions are discussed.  相似文献   

20.
The lipid bilayer technique was used to examine the effects of the ATP-sensitive K+ channel inhibitor (glibenclamide) and openers (diazoxide, minoxidil and cromakalim) and Cl- channel activators (GABA and diazepam) on two types of chloride channels in the sarcoplasmic reticulum (SR) from rabbit skeletal muscle. Neither diazepam at 100 microM nor GABA at 150 microM had any significant effect on the conductance and kinetics of the 75 pS small chloride (SCl) channel. Unlike the 150 pS channel, the SCl channel is sensitive to cytoplasmic glibenclamide with Ki approximately 30 microM. Glibenclamide induced reversible decline in the values of current (maximal current amplitude, Imax and average mean current, I') and kinetic parameters (frequency of opening Fo, probability of the channel being open Po and mean open time, To, of the SCl channel. Glibenclamide increased mean closed time, Tc, and was a more potent blocker from the cytoplasmic side (cis) than from the luminal side (trans) of the channel. Diazoxide increased I', Po, and To in the absence of ATP and Mg2+ but it had no effect on Imax and also failed to activate or remove the glibenclamide- and ATP-induced inhibition of the SCl channel. Minoxidil induced a transient increase in I' followed by an inhibition of Imax, whereas cromakalim reduced Po and I' by increasing channel transitions to the closed state and reducing To without affecting Imax. The presence of diazoxide, minoxidil or cromakalim on the cytoplasmic side of the channel did not prevent [ATP]cis or [glibenclamide]cis from blocking the channel. The data suggest that the action(s) of these drugs are not due to their effects on the phosphorylation of the channel protein. The glibenclamide- and cromakalim-induced effects on the SCl channel are mediated via a "flicker" type block mechanism. Modulation of the SCl channel by [diazoxide]cis and [glibenclamide]cis highlights the therapeutic potential of these drugs in regulating the Ca2+-counter current through this channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号