首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
戴益民  王相军  刘也 《建筑结构》2015,(2):95-99,88
为研究开洞低矮房屋在台风环境下的破坏机理,基于ANSYS软件采用SST k-ω湍流模型对低矮房屋封闭、单一洞口的屋面风压分布及变化规律进行数值模拟研究,与全尺模型实测及风洞试验结果对比表明:数值模拟结果与实测及风洞试验结果基本吻合,验证了采用SSTk-ω湍流模型研究低矮房屋表面风压的可靠性;湍流度对平均内风压系数的影响随开洞位置不同而不同,屋顶开洞时,随着湍流度的增大,平均内风压系数的绝对值变小,屋面平均净风压系数增大;屋沿开洞时,随着湍流度的增大,平均内风压系数的绝对值增大,但平均净风压系数的变化不大;风向角对整体屋面平均内风压系数的影响显著,尤其是在开洞边缘区和迎风角部区域。  相似文献   

2.
为获得低矮房屋屋面局部平均风压的分布规律,将体型比为1.5∶1∶1的低矮房屋屋面划分成若干典型区域并进行数值模拟研究。数值模拟结果与风洞试验结果对比表明,采用两种研究手段分析的结果吻合较好,从而验证了数值模拟技术在分析低矮房屋表面风压的可靠性。基于数值模拟,分析了七类不同屋面坡角低矮房屋在典型风向角下屋面局部区域平均风压的分布规律。结果表明:屋面局部平均风压随风向角改变而变化明显,且表现出一定的规律性;0°风向角下,靠山墙B,E区域形成局部高吸力区;60°风向角下,迎风屋檐A区及屋角J区测点平均风压系数随坡角的增大有明显递减趋势,屋脊C,D区测点平均风压系数随坡角的增大呈现出先增大后递减的趋势;90°风向角下,迎风屋檐A区及屋角J区各测点平均风压在45°坡角时均为正压。研究结果可为我国沿海多发台风地区低矮房屋的抗台风设计提供依据。  相似文献   

3.
陈丽丽  王振华 《山西建筑》2008,34(11):94-95
对高层建筑屋面的风压分布进行了分析,模拟了0°和45°两个风向角下屋面平均风压分布,得出了迎风的屋面产生了极大的负风压,其他区域风压相对较小,45°风向角为高层建筑屋面风压的较不利风向角的结论。  相似文献   

4.
国内外多次台风灾后调查数据显示,造成建筑物严重破坏的主要原因是由于门、窗以及围护结构突然破坏致使结构表面出现洞口后瞬间增大的风致内压与外风压的联合作用。通过应用计算流体力学软件Fluent 6.3对风致内压进行了多种工况的数值模拟。与已有模型实测结果及理论预测值的对比显示,数值模拟方法具有较高精度,证明了数值模拟应用于内风压研究的有效性,并对误差产生原因进行了详细分析。分别对0°风向角下5种单一主洞口、0°风向角下多洞口和一定面积比不同风向角等3个方面进行了模拟。当结构表面出现单一主洞口时,平均内风压系数等于洞口处外风压系数平均值。在0°风向角多洞口工况下,内风压系数随着迎风纵墙与山墙开洞面积比的增大而增大。在一定面积比不同风向角工况下,内风压系数和屋面升力均随着风向角的增大而减小。根据研究所得到的结论,建议沿海台风多发区的结构设计应考虑风致内压。  相似文献   

5.
通过风洞试验对村镇地区常见的带有硬山搁檩的双坡屋面风压规律进行研究,讨论了房屋在完全封闭、门窗洞口打开以及屋面开洞三种情况下的屋面外部、内部平均风压系数在不同方向角下的分布特性。试验结果表明:硬山搁檩双坡屋面在风向角为50°,60°时,外屋面角部易破坏;屋檐下部的风压系数随屋面坡度的改变而改变;门窗开洞时内屋面风压会加大屋面荷载;屋面开洞对降低屋面风荷载起到有利作用。  相似文献   

6.
基于大气边界层基本理论和流体动力学基本原理,采用FLUENT软件对平面L形低矮房屋风压分布特性进行了数值模拟研究。将数值计算结果与风洞试验结果对比分析,结果吻合良好,表明数值模拟方法是合理可行的。通过数值模拟,详细分析了风向角、屋面坡度、房屋翼长、檐口高度和屋面形式等参数对平面L形低矮房屋外表面平均风压系数分布规律及体型系数的影响。结果表明:风向角与屋面坡度是影响屋面的风压系数分布与体型系数的最主要因素;最不利负压的位置随风向角的改变而不断变化,但往往出现在迎风屋面屋脊及屋檐区域;迎风屋面最不利负压随屋面坡度的增加逐渐减小,背风屋面风压系数分布相对均匀;四坡屋面阳屋脊较多,其背风区往往形成高负压区,这些区域更容易遭受风灾破坏。  相似文献   

7.
针对单体多层无开洞建筑房屋开展了CFD数值模拟表面风压研究,采用ICEM软件建立风场数值计算模型,采用雷诺应力湍流模型、UDF自定义风速入口函数以及一阶迎风函数来定义离散控制方程的对流项,对建筑房屋模型在7个不同风向角的风速作用下的表面风压系数进行了分析。得出建筑房屋迎风面和背风面在不同风向角作用下风压系数分布规律的区别,同时验证了数值模拟结果与相关风洞试验结果趋势一致,数值基本接近。针对串列布置两栋房屋的表面风压相互干扰效应开展CFD数值模拟,定量与定性地分析不同风向下的风致干扰效应对目标房屋与施扰房屋不同位置表面风压的影响。其结果对建筑房屋表面风压的分布规律研究具有参考意义。  相似文献   

8.
应用计算流体力学Fluent软件,对围绕屋面光伏阵列的风场进行雷诺平均数值模拟。首先通过与已有的风洞试验研究结果进行对比,验证两种雷诺平均模型RNG k-ε和SST k-ω计算屋面光伏阵列风场的可靠性。然后,以20°风向角为间隔,对0°~180°范围的10个风向角分别进行了风场模拟,并得到了已有风洞试验结果的验证。再选取2°和20°两种光伏板倾角,分析它们对屋面光伏阵列风场的影响。最后,在不同光伏板倾角的情况下,分析了0.09,0.41,1.02 m三种光伏板与屋面的间距对光伏板表面风压场的影响。  相似文献   

9.
为研究平板型高层建筑的风特性影响,本文采用CFD数值模拟方法,以表面风压、风速增大系数作为评价指标,选取风机安装高度、风向角等作为控制变量,通过建立多组工况研究建筑物周围风能集聚效应。结果表明:对于不同的开洞高度,通道内的风压是比较均匀的,随着开洞高度的增加,洞口表面风压会逐渐增大;而风场的风压系数随着建筑物的高度方向是比较均匀的,大约在建筑全高2/3处到达最大;随着风向角的增大,建筑背风面的驻涡会逐步往洞口通道侧移动,当风向角约为15°-30°和60°-75°时,建筑尾流区有"卡门涡街"现象发生。  相似文献   

10.
对一预制舱变电站项目低矮建筑群中的综合舱建立了屋面角区无构件、附加新型三维曲面构件及传统女儿墙构件三种工况的数值风洞模型,采用SST k-ω模型模拟计算两个典型风向角下综合舱屋面角区的平均风压系数,并与风洞试验结果进行对比分析。结果表明:0°风向下,曲面构件与女儿墙构件均能有效减小屋面角区的平均风压,且效果相当;30°斜风来流风向下,曲面构件和女儿墙构件分别能将屋面角区几个风敏感测点处的平均风压系数均值减小为无构件工况下的67%和72%,表明曲面构件相比女儿墙构件,对优化屋面角区的最不利风荷载相对效果更好;虽然不同工况下屋面角区平均风压系数的数值模拟结果略小,但整体上和风洞试验规律一致,表明数值风洞方法对研究这类问题具有较好的指导作用。  相似文献   

11.
The influence of changing wind direction on the dilution of exhaust gases around buildings was investigated in a simulated, neutrally stable atmospheric boundary layer using a low speed, open circuit wind tunnel. Mean concentration measurements were made on six flat-roofed model buildings at 2–5 wind incidence angles of between 0 and 45°.When vertical exhaust momentum was low, dilution levels 2–8 times lower (depending on building shapes and vent location) were observed for wind incidence angles >30°. However, at high exhaust momentum, the minimum dilution lost its sensitivity to wind direction. A semi-empirical model was devised to quantify, within a factor of 2, the dependence of minimum dilution on wind incidence angle and exhaust momentum.  相似文献   

12.
通过风洞试验研究了截面为切角曲边三角形的连体双塔高层建筑的风荷载特性,并作单塔试验比较。将风压沿截面进行积分求出沿坐标轴方向的合力,然后反算为沿坐标轴方向的整体体型系数。结果显示:风压沿高度变化不大,整体体型系数沿高度递减。单塔最大体型系数对应风向角比坐标轴偏15°。双塔连线方向(x向)体型系数上游塔略小于单塔情形,下游塔基本为零,y向的体型系数略小于单塔y向的,连体部分体型系数达2.2。根据规范和试验结果,提出了类似工程合理的取值建议。  相似文献   

13.
Zhang  Xuelin  Weerasuriya  A. U.  Lu  Bin  Tse  K. T.  Liu  Chun Ho  Tamura  Yukio 《Building Simulation》2020,13(2):439-456

Unconventional configurations of tall buildings are noticeably different from their counterpart of traditional building designs but nevertheless, the unconventional configurations have often been adopted for tall buildings without their impact on the pedestrian-level wind environment (PLWE) fully understood. To fill the existing knowledge gap, this study investigates the PLWE near a 400 m super-tall building with various conventional and unconventional configurations in a regular urban area. Computational fluid dynamics (CFD) simulations were conducted for three incident wind directions (θ = 0°, 22.5°, and 45°) to investigate mean wind speed at the pedestrian level using the three-dimensional (3D), steady-state, Reynolds-averaged Navier-Stokes (RANS) technique. The results reveal 1.5- to 2.5-fold increase in maximum wind speed in the urban area after the construction of a super-tall building. The magnitude of the maximum wind speed and areas with high and low wind speeds in the PLWE, however, significantly vary with building design and incident wind direction. The configurations with sharp corners, large plan aspect ratios and frontal areas and the orientation consistently show a strong dependency on incident wind direction except the one with rounded plan shapes. The location of building openings and direction of building inclination are two other factors that modify the PLWE in an urban area. Moreover, the projected width of the super-tall building at a height slightly above the roof level of surrounding buildings is critical for estimating the areas of high and low wind speed at the pedestrian level.

  相似文献   

14.
The current study aims to determine how the corner recession affects tall buildings with square plans. A series of numerical simulations have been conducted to find the parametric models' wind pressure. Visualization tools, such as contour plots and streamlines, present the wind flow near the buildings. Numerical simulations are conducted using RANS k-ℇ turbulence models considering a length scale of 1:300. Subsequently, a shape optimization study has been carried out to propose a suitable percentage of corner recession, which should minimize the wind pressure on different faces of the building. As design factors, the amount of corner recession (S) and the wind incidence angle (Ø) are taken, along with the mean pressure coefficients (Cp) on the various building faces. Due to the eight axes symmetry of the building configuration, the random sampling technique is used for the Design of Experiment while accounting for the 0°–45° wind angle of attack. The Response Surface Approximation (RSA) is used to construct surrogate models of the objective functions. The RSA models are validated with wind tunnel test results presented in previously published articles. The optimization study is carried out using the multi-objective genetic algorithm technique.  相似文献   

15.
合景大厦体型复杂,在数值模拟与风洞试验结果比较的基础上,主要用数值风洞模拟方法研究了该大厦所受风荷载的特点。通过多种方案的计算分析发现:大厦屋顶大面积悬臂结构对总体风荷栽影响较大,但开口后可适当减小悬臂结构上的平均风荷栽,也可大大减少其脉动风压;弧形墙侧边悬臂结构对整体风荷栽的影响小,但应重视其局部风压的取值;大厦弧形表面可有利于减小迎风面的最大平均风压,而周围环境对舍景大厦风荷载的影响很大。  相似文献   

16.
针对外凸式矩形高层建筑结构外形复杂且其风荷载值无法通过建筑荷载规范直接获得的情况,以丝绸之路世界贸易中心外凸式矩形高层建筑为研究对象,通过风洞试验获得其风荷载值,并与规范给出的矩形结构体型系数进行对比,总结外凸式矩形建筑结构风荷载规律。基于Fluent软件,选用不同湍流模型,对外凸式矩形高层建筑进行数值模拟,并将计算结果与风洞试验结果进行比较,验证数值模拟方法的可行性。结果表明:该高层建筑迎风面的体型系数与规范接近; 背风面底部区域的体型系数比规范值大约70%,其他区域与规范值接近; 侧面体型系数均大于规范值,且最大负压出现在侧面; 对于外凸式矩形高层建筑结构,外凸结构风压较相邻区域增大,凹进结构的风压较相邻区域减小; 体型系数沿高度方向变化较大,凸出结构为迎风面时,其下方相邻区域体型系数比规范值小近50%; 数值计算结果与试验数据整体趋势基本一致; Realizable k-ε模型的数值模拟结果要优于Standard k-ε模型; 对于矩形高层建筑,凸出结构为迎风面时,其相邻上部区域和背风面下部区域风荷载不仅受凸出结构的影响,而且还受到凸出结构宽度的影响,其对体型系数的影响幅度为±20%之间。  相似文献   

17.
对复杂体型的平面T形低矮双坡屋面房屋的风荷载特性进行了风洞试验研究,得到了屋面风压系数以及各屋面体型系数的变化规律;采用计算流体力学软件FLUENT建立了数值风洞模型,在数值分析结果与风洞试验结果吻合良好的基础上,对影响屋面平均风压系数及体型系数的风攻角、屋面坡角、檐口高度、房屋几何尺寸和屋面形式等参数进行了详细分析。结果表明:屋面坡角和风攻角对屋面风压系数的影响显著;在不同风攻角作用下,迎风屋面屋檐及屋脊附近形成较高负压;当屋面处于背风区域时,风压系数分布较均匀;四坡屋面坡角为30°时屋脊背风区域易形成较大负压,局部更易遭受破坏。  相似文献   

18.
The wind direction in the atmospheric boundary layer (ABL) twists with height due to the Coriolis force; this phenomenon is called the Ekman spiral. However, this phenomenon is generally not considered in the present wind load estimation of super high-rise buildings, which may lead to an incorrect estimation and affect the safety of structures. Therefore, this study considers and analyzes the influence of the Ekman spiral phenomenon in the wind direction reduction effect (WDRE) of the wind load of super high-rise buildings. First, this paper proposes an empirical fitting equation for the twisted wind direction angle for a height of 100–800 m according to the classical Ekman spiral theory model (CE model). Subsequently, on the basis of twisted wind, this paper proposes a method for the correction of the wind direction reduction factors (WDRFs) of strong winds considering the influence of the Ekman spiral phenomenon in the design wind load estimation of super high-rise buildings with heights of 400–800 m. A high-frequency balance force measurement test of a square-section super high-rise building model was performed to analyze the influence of the Ekman spiral phenomenon on the WDRE of the aerodynamic force and wind-induced response. Three Chinese cities (i.e., Beijing, Wuhan, and Kunming) are selected as case studies to illustrate the importance and necessity of the correction method. The results demonstrate that the proposed empirical fitting equation accurately determines the twisted wind direction angle at different latitudes and altitudes. Furthermore, estimating the design wind load while considering the WDRE and neglecting the influence of the Ekman spiral phenomenon may lead to a significant underestimation of the wind load of super high-rise buildings, rendering the designed building structure more dangerous.  相似文献   

19.
目前,风洞实验是研究建筑物风荷载的最主要的一种方法,其合理性、可靠性已经得到了广泛的认同,但它也存在着很多不足之处,如费用高、周期长等等。近年来发展起来的建筑物风荷载数值模拟技术在这方面表现得非常活跃,国内外研究者们已经取得了令人鼓舞的成绩,但要以数值模拟取代风洞实验也尚有许多研究工作未开展或研究不透彻。随着模拟技术的发展以及计算机硬件水平的提高,数值风洞技术将具有广阔的前景。  相似文献   

20.
吴珍珍  鄢涛  付祥钊 《工程质量》2009,27(11):49-53
常规建筑自然通风设计均是基于城市尺度的主导风向和风速,并未考虑建筑所处地区的地理位置对主导风速和风向产生的影响,然而城市风由于城市街道、河流、建筑高度、布局、以及太阳辐射、温湿度不同,会发生很大的变化,继续利用城市主导风向作为建筑自然通风分析的边界条件,会产生很大的误差。以深圳市为例,通过CFD软件对城市尺度风环境进行模拟分析,初步得出城市不同分区的风环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号