首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究高速磨削条件下砂轮线速度、切削深度等工艺参数对氧化锆陶瓷工件加工表面质量的影响。通过对单颗磨粒切削氧化锆陶瓷试件过程进行仿真,确定磨粒切削深度与切削速度对磨削力和磨削表面形貌的影响。同时,采用金刚石砂轮对氧化锆陶瓷进行平面磨削实验,获取磨削力和表面形貌等实验数据,对仿真结果进行实验验证。随着切削深度从2μm增大到8μm,单颗磨粒磨削力呈单调递增的趋势,工件表面质量逐渐恶化;当切削深度保持在2μm时,砂轮线速度对工件表面形貌影响不大;当切削深度加大到4μm以上时,提高砂轮线速度可以有效减轻磨削表面的破碎损伤。  相似文献   

2.
基于数理统计模型CBN砂轮磨削力的仿真与试验   总被引:2,自引:0,他引:2  
基于砂轮表面磨粒数理统计方法,建立了单颗磨粒模型,运用DEFORM-3D有限元软件进行了GCr15轴承钢磨削仿真。通过仿真分析表明:切向磨削力和法向磨削力随砂轮线速度的增大而减小,随磨削深度的增大而增大,法向磨削力与切向磨削力之比约为5-10。进行了GCr15轴承钢高速磨削试验,通过仿真与试验数据对比,分析了单颗磨粒磨削力与砂轮总磨削力之间的耦合关系,验证了单颗磨粒有限元仿真的准确性,也说明了砂轮表面磨粒数理统计方法的可靠性,为加工前磨削力的预测提供了理论依据。  相似文献   

3.
为了揭示氮化硅陶瓷磨削温度分布规律以及其对表面成形的影响,首先,建立氮化硅陶瓷纳米级切削的分子动力学模型;其次,研究切削过程中切削参数对切削温度的影响,以及加工过程中切削表面变质层的形成过程;最后,对 K 型热电偶测温和表面能谱分析的仿真与实验结果进行对比分析.结果表明:随着金刚石磨粒切削深度和切削速度的增加,原子晶格发生变形和非晶相变过程中时释放的能量增多,从而使切削温度升高;切削高温会引起氮化硅陶瓷发生非晶相变现象,非晶态原子重新与已加工表面断裂的原子键结合形成表面变质层;分子动力学仿真模型可以用来预测氮化硅陶瓷材料实际磨削加工中磨削温度变化情况,对生产加工具有参考价值.  相似文献   

4.
为探索金刚石砂轮磨削HIPSN(热等静压氮化硅)陶瓷时,磨削工艺参数对法向、切向磨削力的影响情况。设计正交试验重点研究磨削深度、砂轮线速度、工件进给速度等磨削工艺参数对法向、切向磨削力的影响规律,同时基于ABAQUS建立单颗金刚石磨粒切削HIPSN陶瓷有限元仿真模型,将试验结果与仿真结果进行对比。结果表明,提高砂轮线速度、减小磨削深度、降低工件进给速度,法向、切向磨削力均减小。磨削力比在(8~15)之间。试验结果与仿真输出结果基本一致,验证了该仿真模型的正确性。  相似文献   

5.
建立了碟形砂轮磨削面齿轮的理论模型.应用切斜面磨削理论,将不规则的曲面齿面等效转化为平面,结合Gleason点接触椭圆等特征,方便对磨削力进行分析求解.将砂轮上的工作磨粒数均匀划分成单颗磨粒成屑力与滑擦力个体,精确阐述砂轮在磨削面齿轮时的磨削力.经过实验结果与仿真数值的比照分析得到磨削力对磨削用量的影响参数,实验结果表明,砂轮转速与面齿轮磨削力成反比例关系,工件进给速度与磨削速度与面齿轮磨削力成正比例关系.通过磨削力的实验结果与仿真数值对比分析,可得出最大相对误差为17.9%,此数据证明了建立的模型与实验结果较为契合,能够很好地反映磨削力与磨削用量之间的关系变化,在提高面齿轮磨削精度与工艺上提供了基础的理论依据.  相似文献   

6.
介绍了轴向缓进给磨削加工原理,建立了单颗金刚石磨粒磨削工程陶瓷的仿真模型,并就磨削力在X、Y、Z向上的分力对仿真结果的影响进行分析。最后通过对不同磨削条件下的单颗金刚石磨粒的磨削过程进行仿真,研究了砂轮转速、砂轮轴向进给速度、工件转速,以及磨粒锥角对磨削力的影响。  相似文献   

7.
柱面微透镜阵列的加工精度要求高,加工效率低,采用具有微细轮廓结构的成形砂轮进行磨削加工能够极大地提高加工效率。为了预测成形砂轮磨削工件的面形误差和表面粗糙度,建立了成形砂轮磨削仿真模型。通过滤波方法分析和模拟微细结构成形砂轮的磨粒突出高度的偏态分布特征,结合实测的砂轮的轮廓形状和跳动完成了整体的空间砂轮的重构,同时建立了砂轮表面磨粒的磨削运动学模型,模拟出工件磨削加工后的表面形貌。最后,开展磨削实验验证了仿真模型的有效性。对比仿真与实验结果可知,面形误差PV值的偏差为5.78%,Ra值的偏差为17.3%,Rz值的偏差为12.9%。该磨削仿真模型能有效预测磨削表面的面形误差和表面粗糙度。  相似文献   

8.
在切点跟踪磨削过程中,结合磨削切点在工件和砂轮表面的运动方程,通过对砂轮与工件之间弹性变形的分析得到其接触弧长,同时通过对单颗磨粒的受力分析得到了砂轮与工件之间的磨削力的计算模型,并通过磨削实验对磨削力计算模型的可靠性进行了验证。MATLAB计算结果表明,切点跟踪磨削中磨削力角的变化呈现出周期性,随磨削深度的变化呈现出非线性。不同磨削深度下的磨削实验验证了切点跟踪磨削法磨削力计算模型的可靠性和正确性。  相似文献   

9.
通过对实际砂轮表面形貌的测量分析,获得砂轮磨粒面密度和突出高度的分布规律,基于虚拟格子法建立砂轮磨粒位置随机分布、突出高度服从正态分布的虚拟砂轮模型,进而建立钢轨打磨的三维仿真模型。仿真分析不同打磨转速对打磨磨削力、去除量、表面粗糙度及打磨表面形貌的影响。利用钢轨打磨摩擦试验机开展了钢轨打磨试验,试验结果与仿真结果进行了对比。结果表明:打磨转速增加时,钢轨磨削力呈小幅度减小,打磨去除量明显增大;钢轨表面粗糙度随打磨转速的增加而减小,随打磨深度的增加而增大;打磨后钢轨表面呈现多条犁沟和区域性的材料隆起;仿真与试验结果具有较好的一致性,验证了所建立的仿真模型预测钢轨打磨材料去除行为的可靠性。  相似文献   

10.
磨粒有序化排布电镀砂轮可以有效提高砂轮的磨削性能,获得良好的表面完整性。本文从生物学的叶序排布理论出发,提出一种磨粒叶序排布的电镀砂轮。利用有限元分析软件(DEFORM)对磨粒叶序排布电镀砂轮进行了磨削力的仿真研究,获得了不同的叶序参数及磨削用量对磨削区域磨削力的影响规律,并与普通无序排布砂轮进行对比。仿真结果表明:叶序排布砂轮磨削区域的磨削力明显小于无序排布砂轮。  相似文献   

11.
为探究镍基合金在磨削加工中的材料去除机理,采用圆弧角度随机切分法,对砂轮表层磨粒进行了轮廓、分布的几何建模;采用平行键粘结线性标定法,对镍基合金材料进行了离散元模型校准;建立了砂轮磨粒磨削镍基合金加工的动态仿真.仿真结果表明:磨削过程中,磨削力存在动态波动;磨削切向力、法向力随着砂轮表面磨粒轮廓边数增加而减小;磨削切向力、法向力随着砂轮旋转速度增加而减小,数值模拟方法和结果对镍基合金磨削加工过程材料去除机理研究具有一定参考价值.  相似文献   

12.
考虑磨粒排布方式对砂轮磨削效率和性能有重要影响,设计制备磨粒无序和有序排布的加压内冷却砂轮,利用砂轮表面形貌检测和图像识别技术,建立砂轮磨削GH4169高温合金的三维有限元模型。采用不同磨粒排布的砂轮开展磨削GH4169高温合金的实验研究,对比分析磨削力、磨削温度、加工表面粗糙度以及表面微观形貌,研究磨粒无序和有序两种排布方式对砂轮磨削性能的影响。结果表明:对于加压内冷却砂轮而言,相对磨粒无序排布,磨粒有序排布方式能获得更优良的加工表面质量,磨削力、磨削温度和表面粗糙度均降低,且工件表面形貌更加规则完整。  相似文献   

13.
30CrNiMo8钢是材料加工中典型的难加工材料,在加工过程中,其磨削力大,砂轮磨损严重,给加工生产带来很大影响。针对30CrNiMo8钢磨削力进行试验研究,对正交试验所得数据进行线性回归分析,得到了适用于试验条件的磨削力经验公式;根据砂轮地貌模型特点建立了合理的砂轮数学模型,分析了磨粒磨削机理和磨削接触弧长;根据分析做出了仿真磨削的前提假设,确定了磨削试验的条件,得出了高速超高速磨削仿真状况下磨削力的变化规律,并通过对仿真数据和试验数据的比较得到30CrNiMo8钢的磨削力经验公式。  相似文献   

14.
建立了多颗粒金刚石小砂轮轴向进给磨削工程陶瓷的磨粒运动轨迹模型,通过改变砂轮转速、陶瓷件转速、轴向进给速度,揭示加工参数变化和磨粒运动规律的关系。通过不同加工参数下实际的陶瓷加工实验,分析了进给速度对边缘碎裂、磨削力、金刚石磨粒耗损的影响规律,得到的实验分析结果和仿真结果一致。实验运用了合适的实验方案和测力系统,并利用边缘检测和轮廓曲线拟合的方法实时追踪检测金刚石顶尖曲率半径变化来定性分析金刚石磨粒的磨损情况。研究结果为如何利用合理的进给速度控制陶瓷材料的边缘碎裂,减少工件和砂轮磨具的损伤提供了借鉴。  相似文献   

15.
分析了磨削强化工艺过程中实际磨削时间以及磨削过程中磨削力的变化规律,提出了分段变磨削力磨削温度仿真方法来预测磨削强化层深度分布。首先对磨削力进行离散,计算相应的热流密度;然后将热流密度按砂轮与工件实际接触长度依次施加到工件的磨削表面,对工件磨削过程中的温度场进行仿真分析,得到了磨削强化层的分布;最后将所提出仿真方法与实验和传统仿真方法进行了比较分析。结果表明,基于分段变磨削力仿真可以更准确地预测工件沿磨削方向的磨削强化层分布。  相似文献   

16.
磨削力对磨削温度、砂轮磨损等有重要影响,是评判TC4钛合金磨削性能的关键指标。由于砂轮磨粒大小、形状差异以及分布的随机性,磨削过程难以定量表述,已有磨削力模型的推导大部分基于一定的假设,与实际存在偏差。通过磨屑变形力与磨粒横截面积的关系以及法向压力与压入深度的关系建立了单颗磨粒磨削力模型;基于磨屑的横截面积与工件体积去除率,建立单颗磨粒磨削力与单位宽度磨削力的联系,进一步推导出TC4钛合金的平面磨削单位宽度磨削力模型。结合实验数据,得到试验条件下的磨削力解析式。分析表明:法向磨削力的平均相对误差为4.9%,切向磨削力的平均相对误差为5.1%。  相似文献   

17.
对纳米陶瓷涂层材料在金刚石砂轮精密磨削过程中的磨削力(包括单位磨削面积磨削力和砂轮单颗磨粒磨削力)进行了研究,分析了砂轮磨削深度、工件进给速度、金刚石砂轮磨粒尺寸以及粘结剂类型等磨削参数对磨削力的影响规律.  相似文献   

18.
采用金刚石砂轮是磨削热等静压氮化硅(HIPSN)陶瓷最常用的加工方法,但是被磨零件亚表面常常伴随裂纹、崩碎等加工损伤,因此研究裂纹扩展一直是工程陶瓷的热点问题。对磨削加工后的HIPSN陶瓷亚表面裂纹进行探究,分析其在磨削加工过程中产生裂纹的原因以及去除机理,研究结果表明在磨削过程中对裂纹进行适当的控制,可以提高陶瓷零件的可靠性。设置单因素实验,对不同磨削参数下HIPSN陶瓷的磨削力进行测量,通过扫描电镜(SEM)对亚表面裂纹和表面形貌进行观察,分析磨削力对亚表面裂纹的影响。实验结果表明:磨削力随着砂轮线速度的增大而减小,随着工件进给速度和磨削深度的增大而增大;当磨削力变大时,陶瓷亚表面裂纹扩展程度增加,表面形貌变差。在粗磨加工HIPSN陶瓷时,可以通过减小工件进给速度和磨削深度,提高砂轮线速度的方法来降低裂纹的扩展程度,能够有效降低后续工艺的加工时间和难度,提高表面质量。  相似文献   

19.
用金刚石砂轮对氧化锆陶瓷套圈内圆的磨削试验来研究砂轮线速度、砂轮粒度、轴向振荡速度和磨削深度对磨削力的综合影响,从而提出陶瓷内圆磨削力的数学模型。首先采用正交法设计出不同参数下的实验方案,然后通过Kistler旋转测力仪对磨削力进行实时测量,最后利用Matlab软件对所得数据进行求解。得到了内圆磨削力的数学模型,该模型可用来进行磨削力的预测,并且提高加工效率。通过数学模型可以看到,在给定的几个对磨削力具有影响的参数中,磨削深度对法向磨削力的影响最大,砂轮线速度对切向磨削力的影响最大。通过试验验证,该磨削力的数学模型的误差在10%以内,对生产实践具有一定的借鉴意义和指导作用。  相似文献   

20.
研究了树脂结合剂金刚石砂轮修整过程中修整力与修整效果的关系,基于修整力的变化表征了砂轮的表面形貌及磨削性能。首先,对碳化硼、碳化硅、白刚玉3种砂轮修整工具进行实验,并采集了修整过程中修整力的变化;然后,利用白光干涉仪观测修整后砂轮的表面形貌;最后,对修整后砂轮进行磨削验证实验,得到不同修整工具修整后砂轮的磨削性能。基于上述实验,分析并验证了修整力的变化与砂轮表面形貌和砂轮磨削性能的关系。结果表明,法向力Fn能够表征砂轮的磨粒切削刃密度以及磨粒突出高度;修整比率β反映了砂轮的锋锐程度,当β稳定时,砂轮达到充分修整。因此修整力反映了砂轮表面形貌和磨削性能,根据修整力的变化可以把握砂轮的修整进程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号