首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
通过实验分析切削工艺参数对工件加工表面晶格歪扭深度的影响表明 ,切削速度V、刀具前角γ、刀具后角α以及切削次数是影响工件加工表面晶格歪扭层深度的主要因素。提出将人工智能理论中的遗传算法和BP算法相结合的模型 ,并用于在线预测切削加工中工件表面的晶格歪扭层深度  相似文献   

2.
为了研究GCr15钢在导电加热条件下的切削温度,利用ABAQUS软件对GCr15钢的导电加热切削过程进行有限元仿真,建立有限元模型,研究了加热电阻通以加热电流产生的焦耳热、工件在外力作用下的弹塑性变形产热以及刀—屑摩擦产热引起工件材料的温升变化;利用有限元仿真模型分别对刀具前角、切削速度及切削深度进行单因素试验,研究三者对切削温度的影响。结果表明:当刀具前角增加时,刀具前角与切削温度呈负相关;当切削速度和切削深度分别增加时,两者均与切削温度呈正相关。  相似文献   

3.

针对利用金属薄壁结构轴向切削过程吸收能量的吸能装置,采用多元线性回归分析的方法,建立了吸能装置切削吸能过程的界面力稳定值、能量预测模型。采用方差分析的方法对该模型的回归方程和系数进行了显著性检验。研究了刀具前角、切屑圆心角、切削深度和切削速度对切削式吸能过程的影响程度。研究结果表明,预测模型的回归方程是显著的,刀具前角和切屑圆心角对界面力稳定值的影响显著,切削深度和切削速度对界面力稳定值的影响不显著;刀具前角、切屑圆心角和切削深度对吸能的影响显著,切削速度对吸能的影响不显著。  相似文献   

4.
试验研究了6061铝合金的微细刨削性能。在定制的精密雕铣床上,使用金刚石刀具在不同的切削条件下,对6061铝合金进行切削深度(0.005~0.1)mm的微细刨削,观察切削参数对工件表面粗糙度的影响。使用激光共聚焦显微镜对金刚石刀具以及各种切削条件下的加工表面进行分析。试验结果表明:切削速度和切削深度对铝合金工件刨削表面粗糙度影响很小,进给量是影响微细刨削铝合金表面粗糙度的主要原因。一般情况下,越小的进给量获得表面粗糙度值越小,但是进给量小到一定程度时,表面粗糙度趋于稳定。此时,工件表面的微裂痕,坑洞、划痕和材料本身的杂质是影响其表面粗糙度的主要因素。另外,单晶金刚石刀具的刃磨质量要优于聚晶金刚石刀具,因此可以获得更小的表面粗糙度值。结论表明,使用单晶金刚石刀具对6061铝合金进行切削速度v=2000mm/min、切削深度ap=10μm、进给量f=10μm的微细刨削可以获得Ra37.3nm的表面。  相似文献   

5.
在微细加工精密微小零件的过程中,存在的主要问题之一是有微型毛刺产生。利用有限元软件Abaqus对铝2024-T3微细切削进行仿真,运用Johnson-Cook(J-C)模型建立工件材料模型,用网格自适应技术(arbitrary Lagrangian Eulerian,ALE)实现切屑和工件的分离,切屑和刀具的接触摩擦模型采用修正的库仑摩擦定律,动态模拟微型毛刺的形成过程,分析不同刀具几何参数及切削参数对毛刺形成的影响,得到微细加工过程中不同刀具几何参数及切削参数对微型毛刺形成影响的一般规律。分析结果为优化刀具几何参数及切削参数、减少微细切削中的毛刺和提高表面加工质量等提供指导。  相似文献   

6.
本文基于离散元法,利用PFC2D软件分别建立陶瓷材料和工件材料真实的离散元模型,模拟氧化铝基陶瓷刀具在加工45钢的过程中刀具裂纹的形成、扩展及材料剥落的演化过程。采用单因素法分析了切削深度、切削速度、刀具前角和不同氧化铝基陶瓷材料对刀具磨损的影响,为提高加工质量和合理选择加工参数提供依据。结果表明:在一定范围内增大切削速度可以降低磨损量,提高加工效率;切削加工时应尽量选取合适的切削深度以减少刀具的磨损和延长刀具使用寿命,即采用小切削深度;刀具前角为-6°时可以获得更好的加工质量,并减少刀具磨损。  相似文献   

7.
搭建了单颗磨粒划擦试验平台,开展了单颗磨粒铰珩试验研究。以毛刺高度和根部厚度作为毛刺尺寸评价指标,分析了切削深度、切削速度和进给速度对毛刺形貌的影响规律。试验结果显示:切削深度对于毛刺尺寸影响最大,切削速度和进给速度对于毛刺尺寸影响较小。毛刺尺寸随切削深度的增大而增大,切削速度和进给速度的增加,毛刺尺寸变化不明显。  相似文献   

8.
实验研究了用小型数控铣床进行微槽形工件微细端铣削过程中,不同切削条件对工件表面粗糙度的影响。通过对每齿进给量、切削速度、切削深度及刀具直径取不同的值,设计并实施了一系列微槽形工件微细端铣削实验,确定每一因素对表面粗糙度定性、定量的影响特性,分析各因素间交互作用对表面粗糙度值的影响,并确定主要影响因素。根据工件表面粗糙度轨迹特征获悉,刀具跳动不仅影响微细端铣削零件的尺寸精度,同时对零件的表面粗糙度也会造成显著影响,减小刀具跳动对改善零件表面质量意义重大。  相似文献   

9.
建立了切削过程三维温度及热应力模型,整体模拟了金属的切削过程,得到不同切削速度下的切削力,工件变形区的应变、应力分布以及切削温度的分布,并对切削速度以及刀具前角对切削温度分布的影响进行分析.结果表明,提高切削速度对于减小主切削力,降低切削温度是有利的.三维仿真能更加真实地揭示刀具和工件的切削状态.  相似文献   

10.
建立了原子力显微镜针尖切削单晶铜的三维分子动力学模型,采用嵌入原子势模拟工件原子之间的作用,采用Morse势模拟工件原子和刀具原子之间的作用.研究了工件材料的不同晶向和刀具切削方向、切削速度对工件亚表面变形层深度的影响.引入了原子势能变形判据,通过分析不同变形区域内原子的势能变化判断工件变形程度.观察了不同切削状态下亚表面原子势能的变化,发现工件材料晶向和切削方向对亚表面变形层深度有着显著影响.在切削速度为20~250 m/s范围内,切削速度对亚表面变形层深度没有影响.  相似文献   

11.
单晶硅加工裂纹的离散元仿真研究   总被引:3,自引:0,他引:3       下载免费PDF全文
通过力学性能数字试验模拟及校准,建立了单晶硅的离散元模型.基于该模型对单晶硅微加工过程进行了动态模拟,分析了不同切削速度、切削深度及刀具前角等对加工后表面裂纹情况及切屑形成的影响,结果表明:加工后表面裂纹的数目及其最大深度均随刀具前角的增大而减小,而随切削速度及切削深度的增大而增大;切削速度越高,切削深度对加工表面的质量影响越大;随着刀具由正前角变为负前角,刀具前方特别是刀具下方的材料损伤程度逐渐增大,在前角变至0°之前,刀具下方的材料损伤程度基本上保持不变,而当前角变为-15°时,刀具下方的材料变形程度显著增大.  相似文献   

12.
刘浩  白瑀  韩绍辉 《工具技术》2022,(12):74-80
为解决AISI-4340合金钢在切削过程中切削温度高、加工性差等问题,基于DEFORM-3D仿真软件,设计单因素仿真实验和四因素三水平正交仿真实验,运用极差分析法分析仿真结果,获得最优参数组合。仿真结果表明:增大切削速度vc、切削深度d和进给量f,切削力和切削温度随之增大;不同切削参数和刀具结构参数对切削力的影响程度顺序为钝圆半径r>刀具前角γ>切削速度vc>刀具后角α;对切削温度的影响程度顺序为切削速度vc>钝圆半径r>刀具后角α>刀具前角γ;利用遗传算法对切削参数和刀具结构参数进行优化,以最小切削力和刀具切削温度为评估标准时,得出最优组合为切削速度vc=300m/min,刀具前角γ=11°,刀具后角α=7°,钝圆半径r=0.15mm。  相似文献   

13.
通过正交试验法研究PCD刀具干式车削Ti6Al4V时切削速度、进给量和切削深度对工件表面粗糙度和刀具后刀面磨损的影响。试验结果表明,切削速度为120-160m/min、进给量为0.15mm/r、切削深度为0.15mm时,可以获得理想的工件表面粗糙度和刀具后刀面磨损量。  相似文献   

14.
本文借助Abaqus软件,模拟了普通钢板的二维切削,通过设计三因素三水平正交试验,并结合极差分析法,得出结论:对切削力影响程度最大的因素是切削深度,其次是切削速度,刀具前角的影响最小,且最佳的组合为1 m/s的切削速度,0.002 m的切削深度,15°的刀具前角。又分别以上述三个因素为变量,进行了单因素试验,得出结论:切削力随切削深度和切削速度的增大而逐渐增大,随刀具前角得增大先增大后减小,在刀具前角为10°时达到最大,为3.2×106 N。  相似文献   

15.
通过力学性能的数值模拟实验及校准,建立了光学玻璃的离散元模型和超精密切削加工的模型,并对其微切削过程进行了模拟;分析了在不同刀具前角、切削深度及切削速度加工条件下对加工后表面裂纹形成的影响。结果表明:加工表面的裂纹数目和裂纹最大深度随切削深度的增大而增大,而随刀具前角的增大而减小;加工表面的裂纹数目随切削速度的增大而减小,裂纹最大深度随切削速度的增大而增大。  相似文献   

16.
微细切削加工中形成的毛刺严重降低了被加工微型零部件的精度和棱边质量,影响了工件的使用性能,对微细切削的毛刺研究有利于推动微细切削技术的发展。系统概述了国内外微细切削毛刺的研究进展,重点阐述了研究者对微细切削毛刺形成机理、影响因素及预测预报技术的研究,并在分析微细切削特殊切削环境的基础上,结合尺度效应理论研究了微细切削毛刺的形成机理,指出了微细切削毛刺研究尚存的主要问题,同时确立了今后深入开展微细切削毛刺研究的发展方向。  相似文献   

17.
采用TC11钛合金车削正交试验研究了各车削参数对切削温度和切削力的影响规律,进一步分析车削参数和表面粗糙度的内在联系。结果表明:切削温度与切削力相互影响,当切削速度在50~100m/min时,切削速度越高,刀具对工件挤压越剧烈,且切削温度升高并使工件软化,导致切削力减小。通过极差分析发现,影响切削力的切削参数依次为切削深度>进给量>切削速度,影响切削温度的切削参数依次为切削速度>进给量>切削深度;对于表面粗糙度各切削用量影响程度大小依次为进给量>切削速度>切削深度。在本次试验参数内,得到了最优切削力的切削参数和最优表面粗糙度的切削参数。研究结果对于加工钛合金的切削参数优化提供一定指导。  相似文献   

18.
为揭示车削过程中刀具安装高度对切削过程的影响,设计了刀具偏高安装和等高安装的两个方案进行比较,推导了刀具安装高度和刀具实际角度的关系式,分析了刀具安装高度对刀具标注角度的影响,刀具安装偏高时实际前角增大、实际后角减小。然后对工业常用45钢进行微量润滑精密车削实验,得到刀具等高安装和偏高安装两种条件下,切削速度对切削力、表面粗糙度和工件三维形貌的影响规律。结果表明,刀具安装偏高使得切削力、表面粗糙度增大,三维形貌变差。  相似文献   

19.
超声振动精密切削振幅对工件尺寸误差的影响   总被引:1,自引:0,他引:1  
精密超声振动切削是将一定振幅的高频振动添加到刀具的运动过程中的一种加工方式,具有切削力小,加工精度高,加工表面质量好等特点。采用动力学分析方法利用二自由度的振动切削工件-刀具系统模型,并借鉴普通切削中对切削力的分析方法,首次从理论上实现了对振动切削中刀具振幅对工件变形影响的研究,并采用数值模拟的方法给出它的变化规律:在精密振动切削使用的振幅范围内,刀具振幅的变大会使工件的净位移减小、进而使工件的尺寸误差减小。同时,给出了不同刀具前角、切削速度和切削深度条件下,工件尺寸误差随振幅变化的规律。  相似文献   

20.
微细切削加工中切削深度必须大于最小切削厚度才能获得比较好的表面加工精度。为了研究微细切削下最小切削厚度的有效标定方法,利用ABAQUS/Explicit有限元分析平台对AISI4340的二维正交微细切削过程进行仿真,结果表明,当刀具切削刃圆弧半径为6μm,切削速度为500 mm/s时的最小切削厚度为1.1μm,发现了微细切削过程中分流角的存在是切屑形成的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号