首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The return flows of reject water from sewage sludge dewatering alter the activated sludge process in a conventional WWTP and increase TN concentration in the final effluent from WWTP. The objective of the investigation carried out was to consider the application of multistage treatment wetland (MTW) for the treatment of reject water from sewage sludge dewatering in a centrifuge (RWC). This paper aims to present the design and performance of each stage of the treatment as well as the efficiency of total MTW. The full scale pilot plant for RWC, consisting of two vertical flow beds (SS VF) working in series, followed by an horizontal flow bed (SS HF), was built in 2008. The applied configuration ensured a very high removal efficiency of principal pollutant (COD - 76.0% and NH4+-N - 93.6%). In the investigated facilities, the SS VF beds ensured an effective removal of nitrogen compounds, especially NH4+-N, whereas the decomposition of hardly degradable Org-N and COD took place in SS HF. This research illustrates that the MTW could be successfully applied for the treatment of RWC.  相似文献   

2.
The aim of this work was to study the feasibility of the denitrification process enhancement, in the Ciudad Real (Spain) WWTP, by dosing agro-food wastewaters generated nearby the city. The studied agro-food wastewaters were characterised by a high COD and low nutrients concentration. The denitrification rates with these wastewaters were lower than those obtained either with acetate or urban sewage, however the dose of agro-food wastewaters raised significantly the denitrification capacity in the WWTP because of the significant increase of easily biodegradable substrates in the wastewater. From the laboratory NUR batch test it was observed that the best agro-food wastewater to enhance the denitrification process was that coming from tomato processing, which presented an average denitrification rate of 1.9 mg NOx-N/(g VSS.h) and an average denitrification yield of 0.2 mg NOx-N/mg COD. The viability of the use of tomato processing wastewater was checked in a pilot plant optimised for urban sewage treatment with biological nutrient removal. The optimum dose, 5.9 mg COD/mg NOx-N, was applied and 99% of the nitrate was removed from the wastewater without influencing negatively either the COD or P effluent concentrations.  相似文献   

3.
Anaerobic digestion is the only energy-positive technology widely used in wastewater treatment. Full-scale data prove that the anaerobic digestion of sewage sludge can produce biogas that covers a substantial amount of the energy consumption of a wastewater treatment plant (WWTP). In this paper, we discuss possibilities for improving the digestion efficiency and biogas production from sewage sludge. Typical specific energy consumptions of municipal WWTPs per population equivalent are compared with the potential specific production of biogas to find the required/optimal digestion efficiency. Examples of technological measures to achieve such efficiency are presented. Our findings show that even a municipal WWTP with secondary biological treatment located in a moderate climate can come close to energy self-sufficiency. However, they also show that such self-sufficiency is dependent on: (i) the strict optimization of the total energy consumption of the plant, and (ii) an increase in the specific biogas production from sewage sludge to values around 600 L per kg of supplied volatile solids.  相似文献   

4.
Optimisation of nitrifying activated sludge plants towards nutrient removal (denitrification and enhanced P-removal) leads to a substantial reduction of operating costs and improves effluent and operating conditions. At WWTP Zürich-Werdh?elzli, initially designed for nitrification only, an anoxic zone of 28% of total activated sludge volume was installed and allowed 60% nitrogen elimination besides several other optimisations. In 2001 the operation of WWTP Zürich-Glatt was stopped and the wastewater was connected to WWTP Werdh?elzli. To improve nitrogen removal, WWTP Werdh?elzli co-financed two research projects; one for separate digester supernatant treatment with the anammox process operating two SBRs in series and the other applying NH4 sensors for aeration control in order to decrease energy consumption and raise effluent quality. The results of both projects and the consequences for WWTP Werdh?elzli are discussed in this paper.  相似文献   

5.
Among many waterborne diseases the giardiasis and cryptosporidiosis are of particular public health interest, because Giardia cysts and Cryptosporidium oocysts can persist for long periods in the environment, and both pathogenic protozoa have been implicated as the cause of many outbreaks of gastroenteritis in the last 25 years. In order to evaluate the efficiency of cysts and oocysts' removal by the activated sludge process, and by UV reactor in inactivating cysts and oocysts in one wastewater treatment plant (WWTP) of Campinas, three sampling points were selected for study: (1) influent, (2) treated effluent without UV disinfection and (3) treated effluent with UV disinfection. Giardia spp. cysts prevailed with higher density in the three different sample types. Cryptosporidium spp. oocysts were observed in only two samples of influent and just one sample of treated sewage with UV disinfection. In the animal infectivity assay for Giardia spp, one mouse of the UV treated group revealed trophozoites in intestinal scrapings. The results of the present study indicate that treatment by activated sludge process delivered a reduction of 98.9% of cysts and 99.7% of oocysts and UV disinfection was not completely efficient regarding the inactivation of Giardia cysts in the case of the WWTP studied.  相似文献   

6.
Performances of a granular sequencing batch reactor (GSBR).   总被引:2,自引:0,他引:2  
Aerobic granulation in sequencing batch reactors is widely reported in literature and in particular in SBAR (Sequencing batch airlift reactor) configuration, due to the high localised hydrodynamic shear forces that occur in this type of configuration. The aim of this work was to observe the phenomenon of the aerobic granulation and to confirm the excellent removal efficiencies that can be achieved with this technology. In order to do that, a laboratory-scale plant, inoculated with activated sludge collected from a conventional WWTP, was operated for 64 days: 42 days as a SBAR and 22 days as a SBBC (sequencing batch bubble column). The performances of the pilot plant showed excellent organics removal. COD and BOD removal efficiencies were respectively, 93 and 94%; on the contrary, N-removal efficiency was extremely low (5%-45%/o). The granules dimensions increased during the whole experimentation; change of reactor configuration contributed to further improve this aspect. The experimental work confirmed the essential role of hydraulic settling time in the formation of aerobic granules and in the sludge settleability and the need to find an optimum between granule size and oxygen supply to achieve good N-removal efficiency.  相似文献   

7.
Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.  相似文献   

8.
Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.  相似文献   

9.
A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.  相似文献   

10.
An experimental study was carried out in order to evaluate the possibility of upgrading the conventional activated sludge WWTP of Seano (Prato, Italy) which treats municipal and textile wastewaters, by using membrane bioreactor (MBR) technology. The MBR pilot plant, set up within Seano WWTP, was fed with mixed municipal-industrial wastewaters during the first experimental period and with pure industrial wastewaters during the second. Performances and operation of the MBR were evaluated in terms of permeate characteristics and variability (COD, colour, surfactants, total N and P) and other operational parameters (sludge growth and observed yield). According to the experimental results the MBR permeate quality was always superior to the Seano WWTP one and it was suitable for industrial reuse in the textile district of the Prato area. Respirometric tests provided a modified IWA ASM1 model which fits very well the experimental data and can be used for the design and the monitoring of a full-scale MBR pilot plant.  相似文献   

11.
In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports experimental results on a possible technical solution to upgrade the S. Colombano treatment plant which treats wastewater from the Florentine urban area. The idea is to use 50% of the volume of the anaerobic digester in order to treat external sewage sludge (as septic tank sludge) together with waste activated sludge and to treat the resulting effluent on a SHARON-ANAMMOX process in order to remove nitrogen from the anaerobic supernatant. Anaerobic co-digestion, tested in a 200 L pilot plant, enables low cost treatment of septic tank sludge and increases biogas production; however, it also increases the nitrogen load re-circulated to the WWTP, where nitrogen removal efficiency is already low (<50%), due to the low COD/N ratio, which limits predenitrification efficiency. Experimental results from a SHARON process tested in a lab-scale pilot plant show that nitrite oxidising bacteria are washed-out and steady nitrite production can be achieved at retention times in the range 1 - 1.5 days, at 35 degrees C. In a lab-scale SBR reactor, coupled with a nitration bioreactor, maximum specific nitrogen removal rate under nitrite-limiting conditions (with doubling time equal to about 26 days at 35 degrees C) was equal to 0.22 kgN/kgSSV/d, about 44 times the rate measured in inoculum Anammox sludge. Finally, a cost analysis of the proposed upgrade is reported.  相似文献   

12.
Membranes can be installed in the clarifier (or aeration tank) of an existing activated sludge plant to enhance the biomass separation function of the system, thereby effectively overcoming any operating constraints associated with sludge settleability. The resulting upgraded plant can be operated at high biomass concentrations (10–20 gMLSS/L), leading to an increase in its treatment capacity. The membranes also ensure a treated water consistently free of suspended solids and a superior disinfection performance. The system offers an enhanced operating flexibility, and allows to operate at high sludge ages leading to a low excess sludge production.Such an immersed membrane activated sludge process (BIOSEP®) has been developed and applied to the treatment of raw sewage. When treating screened raw sewage with this process, with a sludge concentration of 15 gMLSS/L and a volumetric loading of 1.2 kgCOD/m3/d, a 96% COD reduction and a 95% Total Kjeldahl Nitrogen (TKN) reduction have been obtained. The disinfection performance of the system was over 6 Log removal for fecal coliforms. The resulting production of sludge was 0.20 kgMLSS/kgCOD.Two desk case studies are given for 900 m3/day upgraded plants. In one case, the primary objective was to increase the treatment efficiency and develop nutrient removal for the original plant, while in the other case the primary objective was to increase the capacity of the original 460 m3/day plant.  相似文献   

13.
Wastewater treatment plants (WWTPs) represent a significant source for the input of micro pollutants as endocrine disruptors (EDs) or pharmaceutically active compounds (PhACs) into the aquatic environment. Treatment efficiency of WWTPs often is reported, taking into account only inflow and effluent concentrations without further specification of the WWTP investigated. In order to allow comparison and evaluation of the removal efficiency of different layouts and concepts in wastewater treatment, additional information like the sludge retention time (SRT) and sludge load (F/M ratio) are necessary. Presented results from different WWTPs show correlation of removal of EDs and PhACs to the SRT. Compared to WWTPs with high F/M ratio implementation of the nitrification process on WWTPs results in a significant increase of the removal efficiency for EDs and PhACs. This paper describes an approach to determine comparable removal rates for different activated sludge systems based on mass balance and SRT.  相似文献   

14.
The design and operational parameters of an activated sludge system were analyzed treating the municipal wastewaters in Istanbul. The design methods of ATV131, Metcalf & Eddy together with model simulations were compared with actual plant operational data. The activated sludge model parameters were determined using 3-month dynamic data for the biological nutrient removal plant. The ATV131 method yielded closer sludge production, total oxygen requirement and effluent nitrogen levels to the real plant after adopting correct influent chemical oxygen demand (COD) fractionation. The enhanced biological phosphorus removal (EBPR) could not easily be predicted with ATV131 method due to low volatile fatty acids (VFA) potential.  相似文献   

15.
Life Cycle Assessment was used to evaluate environmental impacts associated to a full-scale wastewater treatment plant (WWTP) in Barcelona Metropolitan Area, with a treatment capacity of 2 million population equivalent, focussing on energy aspects and resources consumption. The wastewater line includes conventional pre-treatment, primary settler, activated sludge with nitrogen removal, and tertiary treatment; and the sludge line consists of thickening, anaerobic digestion, cogeneration, dewatering and thermal drying. Real site data were preferably included in the inventory. Environmental impacts of the resulting impact categories were determined by the CLM 2 baseline method. According to the results, the combustion of natural gas in the cogeneration engine is responsible for the main impact on Climate Change and Depletion of Abiotic Resources, while the combustion of biogas in the cogeneration unit accounts for a minor part. The results suggest that the environmental performance of the WWTP would be enhanced by increasing biogas production through improved anaerobic digestion of sewage sludge.  相似文献   

16.
17.
Both biological treatment processes including conventional activated sludge (CAS) and biological nutrient removal (BNR) processes, and physico-chemical treatment processes including ozonation process and Title 22 process consisting of coagulation, sedimentation and filtration followed by UV or chlorination disinfection after the above biological processes, were compared from the viewpoint of removal efficiency. 66 pharmaceuticals including antibiotics, analgesics, psychoneurotic agents were measured with SPE-LC/MS/MS. 26 compounds out of 66 were detected in the influent ranging ng/L to microg/L order. Particularly, disopyramide, sulpiride, and dipyridamole that have been rarely detected before in the WWTP, occurred at concentration levels of more than 100 ng/L. The total concentration of the individual pharmaceuticals in the influent was efficiently removed by 80% during the biological treatment. But removal efficiencies of carbamazepine and crotamiton were less than 30%. The total concentration of the individual pharmaceuticals in the effluent from CAS process was 1.5 times higher than that from BNR process. Further, the total concentration of the individual pharmaceuticals in the discharge from WWTPs applying ozonation following activated sludge process was reduced to less than 20%. Physico-chemical treatment train called Title 22 treatment after CAS could not efficiently remove the pharmaceuticals. However, ozonation process followed by biological activated carbon process could efficiently reduce all the residual pharmaceuticals below their quantification limits.  相似文献   

18.
Impact of model-based operation of nutrient removing SBRs on the stability of activated sludge population was studied in this contribution. The optimal operation scenario found by the systematic model-based optimisation protocol of Sin et al. (Wat. Sci. Tech., 2004, 50(10), 97-105) was applied to a pilot-scale SBR and observed to considerably improve the nutrient removal efficiency in the system. Further, the process dynamics was observed to change under the optimal operation scenario, e.g. the nitrite route prevailed and also filamentous bulking was provoked in the SBR system. At the microbial community level as monitored by DGGE, a transient shift was observed to gradually take place parallel to the shift into the optimal operation scenario. This implies that the model-based optimisation of a nutrient removing SBR causes changes at the microbial community level. This opens future perspectives to incorporate the valuable information from the molecular monitoring of activated sludge into the model-based optimisation methodologies. In this way, it is expected that model-based optimisation approaches will better cover complex and dynamic aspects of activated sludge systems.  相似文献   

19.
In municipal WWTP with anaerobic sludge digestion, 10-20% of total nitrogen load comes from the return supernatant produced by the final sludge dewatering. In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries, in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports the experimental results of the SHARON-ANAMMOX process application to anaerobic supernatant taken from the urban Florentine area wastewater treatment plant (S. Colombano WWTP). A nitritation labscale chemostat (7.4 L) has been started-up seeded with the S. Colombano WWTP nitrifying activated sludge. During the experimental period, nitrite oxidising bacteria wash-out was steadily achieved with a retention time ranging from 1 to 1.5 d at 35 degrees C. The Anammox inoculum sludge was taken from a pilot plant at EAWAG (Zurich). Anammox biomass has been enriched at 33 degrees C with anaerobic supernatant diluted with sodium nitrite solution until reaching a maximum specific nitrogen removal rate of 0.065 kgN kg(-1) VSS d(-1), which was 11 times higher than the one found in inoculum sludge (0.005 kgN kg(-1) VSS d(-1). In a lab-scale SBR reactor (4 L), coupled with nitritation bioreactor, specific nitrogen removal rate (doubling time equal to 26 d at 35 degrees C and at nitrite-limiting condition) reached the value of 0.22 kgN kg(-1) VSS d(-1), which was approximately 44 times larger than the rate measured in the inoculum Anammox sludge.  相似文献   

20.
The sewage-load variations in winter tourism areas are characterized by sudden increases--in the range of a factor two to three--within only a few days at the start and the end of the tourist season, especially at Christmas. The sudden load increases occur during periods of low wastewater temperatures, which is an additional demanding factor with respect to nitrogen removal. A full case study was carried out at WWTP Saalfelden, which is located near one of Austria's largest skiing resorts. The plant is designed for 80,000 PE and built according to the HYBRID-concept, which is a special two stage activated sludge process for extensive nutrient removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号