首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Morphological characteristics of poplar and willow clones were determined in order to identify main characteristics leading to superior growth under increased plant competition with low or high nitrogen (N) availability. Seven hybrid poplar (Populus spp. including one hybrid aspen) and five willow (Salix spp.) clones were grown under greenhouse conditions for 13 weeks at three spacings (20 × 20, 35 × 35, and 60 × 60 cm) and two N levels (20 and 200 mg kg−1). The decrease in spacing from 60 to 20 cm reduced leaf area by 50% but clones had similar aboveground biomass per tree under all spacings, with increasing their height per unit leaf area. More productive clones had greater leaf area (+102%), leaf area per unit plant biomass (+12%) and lower root-to-shoot ratios (−27%) compared to less productive clones. There were positive relationships between leaf area and above-ground biomass per tree for both more and less productive clones. Compared to low N level and 60 cm spacing, trees growing in high N level and 20 cm spacing reached similar root collar diameter, crown width, and leaf area values and even greater height, suggesting that an addition of N could help mitigate negative effects of tree competition.  相似文献   

2.
Short rotation coppice (SRC) willow plantations may play an important role in the future for biomass production purposes. However, the high planting density schemes combined with the frequent harvests occurring in such plantations could rapidly deplete soil resources. The use of genotypes able to produce greater amounts of biomass by using the least water and nutrients may help mitigating this risk. This study aimed at assessing among six willow genotypes (1) the variability of traits related to productivity (e.g. aboveground dry biomass or stem height), leaf and wood nitrogen (N) contents, N exportation rate and water-use efficiency (WUE) as estimated through bulk leaf carbon isotope discrimination (Δ13C), (2) the relationships among traits, and (3) the plasticity of these traits and of the relationships among them across different sites. The six genotypes were grown under SRC at three sites in northern France differing primarily in pedoclimatic characteristics for two years. A significant genotypic variability was found for all traits, except for the N exportation rate. The pedoclimatic context impacted the values of all traits, and the genotypic ranking for traits related to productivity and for Δ13C. Δ13C was negatively correlated with total shoot dry biomass and/or height irrespective of the site, meaning that the most productive genotypes were also the most efficient to use water. In conclusion, no antagonism was detected between biomass production and WUE. The most productive and most water-use efficient genotypes were the ones responsible for the highest nitrogen removal from the plantation during harvest.  相似文献   

3.
《Biomass & bioenergy》2006,30(2):115-124
Growth, biomass allocation and nutrient economy of eight clones of poplar (Populus balsamifera L., P. trichocarpa Hook.) and hybrid poplar (P. trichocarpa Hook. × P. deltoides Bartr.) of north-American origin were studied in a full-factorial pot experiment in Sweden, using the approach of classical growth analysis. The clones were compared in terms of relative growth rate (RGR), biomass production, biomass allocation, nitrogen accumulation and productivity, and ability to withdraw nitrogen from senescing leaves (leaf nitrogen proficiency). The clones differed significantly among treatments by means of several variables, and for some of them also clone × treatment interaction effects were significant. The components of RGR, i.e., leaf area ratio (LAR) and unit leaf rate (ULR), shifted in their importance to explain differences between treatments and genotypes. The results are discussed in the context of growth characteristics particularly important for the selection of clones for multi-purpose poplar plantations grown under the cool-temperate, high-latitude climatic conditions typical for large parts of Sweden.  相似文献   

4.
《Biomass & bioenergy》2006,30(6):497-508
Observation of possibilities and problems was performed when trying to optimise growing conditions for high biomass production by irrigation and fertilisation in a clone test of poplar on sandy soil in the south of Sweden. One hundred and eight clones of pure Populus trichocarpa and hybrids between P. trichocarpa and P. deltoides were evaluated for growth rate, phenology, quality, frost hardiness and pest resistance. Some fertilisation experiments were performed.In some years, some unfertilised clones produced up to 2 kg m−2 of woody dry biomass. Some fertilised clones produced almost twice as much in the years following fertilisation. Stem canker was the main cause of serious injuries in all hybrids, but pure P. trichocarpa stems were not affected. The cimbicid sawfly (Cimbex lutea) caused damage to the quality of the trees in the form of curved stems of some clones. Winter frost killed top shoots of the hybrids in a year with particularly low winter temperatures with long duration. Summer frost (in June) killed up to 1 m of some young top shoots in some clones in the first 3–4 years.The results are discussed in terms of radiation utilisation efficiency, energy efficient ratio, and water and nutrient use efficiency. The discussion finishes with the conclusion that fertilisation, but not irrigation, can be economically motivated. If irrigation is to be economic, then the main objective of the whole operation should be to produce drinkable water from water polluted by society. Biomass production would then be a bonus.  相似文献   

5.
《Biomass & bioenergy》2007,31(7):460-468
The effect of water availability on stand-level productivity, transpiration, water use efficiency (WUE) and radiation use efficiency (RUE) is evaluated for different willow clones at stand level. The measurements were made during the growing season 2000 in a 3-year-old plantation in Scania, southernmost Sweden. Six willow clones were included in the study: L78183, SW Rapp, SW Jorunn, SW Jorr, SW Tora and SW Loden. All clones were exposed to two water treatments: rain-fed, non-irrigated treatment and reduced water availability by reduced soil water recharge. Field measurements of stem sap-flow and biometry are up-scaled to stand transpiration and stand dry substance production and used to assess WUE. RUE is estimated from the ratio between the stand dry substance production and the accumulated absorbed photosynthetic active radiation over the growing season. The total stand transpiration rate for the 5 months lies between 100 and 325 mm, which is fairly low compared to the Penman–Monteith transpiration for willow, reaching 400–450 mm for the same period. Mean WUE of all clones and treatments is 5.3 g/kg, which is high compared to earlier studies, while average RUE is 0.31 g/mol, which is slightly low compared to other results. Generally, all clones, except for Jorunn, seem to be better off concerning biomass production, WUE and RUE than the reference clone. Jorr, Jorunn and Loden also seem to be able to cope with the reduced water availability with increase in the water use efficiency. Tora performs significantly better than the other clones concerning both growth and efficiency in light and water use, but the effect of the dry treatment on stem growth shows sensitivity to water availability. The reduced stem growth could be due to a change in allocation patterns.  相似文献   

6.
In order to assess the ability of willow clones to compete with weeds, willow shoot biomass and plant mortality were measured over the first harvest cycle for 10 commercial and two breeding clones at three different sites in southern Sweden. Two levels of weed pressure (weeded and not weeded) were employed and the effects of cutback or not after the first growing season were compared for willow clones under weed pressure. There were significant differences between clones in their ability to compete with weeds, measured as willow shoot growth reduction in plots with weeds, at two of the three sites. However, shoot biomass reduction due to weeds was large in all the clones, with Stina and SW Inger among the least affected. Mean shoot growth reduction after the first harvest cycle for the commercial clones was 68.3%, 91.2% and 94.3% at the three sites and the corresponding plant mortality was 9.8%, 57.3% and 56.2% under weed pressure. Significant clonal differences in yield, under weed-free conditions, were found at all three sites. Significant clone-site interactions were found for both growth reduction and biomass production. Cutting back shoots after the establishment season, under weed pressure, resulted in higher mean plant mortality and lower mean willow shoot biomass after one harvest cycle at two of the three sites. The weed flora was initially dominated by annuals, but became dominated by perennial weeds during the first harvest cycle.  相似文献   

7.
The development of short-rotation intensive cultural (SRIC) willow systems as a source of bioenergy and bioproducts is growing in the northeastern and midwestern United States. Important data for sustainable management such as nutrient removal and nutrient use efficiency in willow bioenergy plantations is lacking. This study reports wood biomass production, annual removal of nutrients, and nutrient use efficiency in experimental plantings of SRIC willow and poplar at Tully, New York. Effects of clone, fertilization, irrigation, planting density, and harvest cycle were analyzed.

Annual biomass production of 15–22 dryMg/ha removed 75–86, 10–11, 27–32, 52–79 and 4–5 kg/ha/year of N, P, K, Ca and Mg, respectively. For all the variables studied, the responses depended on clone. Fertilization and irrigation increased rates of nutrient removal by means of increased biomass production. Unlike planting density, harvest cycle significantly affected rates of nutrient removal and nutrient use efficiency. For clone SV1 (Salix dasyclados), an irrigated and fertilized planting with a density of 36,960 trees/ha harvested on a 3-year rotation had the highest biomass production and nutrient use efficiency, and the lowest rates of nutrient removal. The annual harvest cycle had the lowest nutrient use efficiency and the highest annual removal of nutrients suggesting that this choice would be most appropriate for biomass crops that are to be used as buffer strips to manage nutrient runoff from agricultural fields. An appropriate choice of clone, planting density, and harvest cycle could tailor the rates of nutrient removal and nutrient use efficiency to match the objective of the planting.  相似文献   


8.
This study aimed to investigate the effect of nitrogen addition on growth and water use of pot-grown Jatropha curcas (J. curcas) under three irrigation frequencies, i.e. 4d (W1), 8d (W2) and 12d (W3). Results show that compared to W1, W3 significantly reduced net plant growth, leaf area, basal shoot xylem cross-section area, total dry mass and whole water storage capacity and total evapotranspiration under saving irrigation water of 21.0%, but increased irrigation water-use efficiency (WUEI) and crop water-use efficiency (WUEET) by 9.7 and 13.1%, respectively. Meanwhile, W3 had higher Huber value, which may improve transfer water efficiency from roots to shoots. Compared to no nitrogen treatment, nitrogen addition increased total dry mass, whole plant water storage capacity, total evapotranspiration, WUEI and WUEET by 13.4–38.1, 8.5–17.7, 14.9–17.5, 16.4–30.7 and 17.7–21.9%, respectively. Thus the optimal combination was the treatment with irrigation frequency of 12d and nitrogen supply, which can increase water-use efficiency.  相似文献   

9.
The present study was conducted to select willow (Salix spp.) clones with a high potential for use as biomass energy crops in the southern region of Tohoku district in Japan. Cuttings of 8 willow clones were planted on an abandoned farmland near Sendai (av. annual temp., 10.9 °C) in March 2006, grown throughout the year and cut back in late December 2006 to resprout from the remaining stools in March 2007. The biomass yield in December 2007, after the first growing season, was highest in Salix pet-susu clone KKD, followed by Salix pseudolinearis clone FXM and Salix sachalinensis clone SEN. The biomass yield on December 2008, after the second growing season, was again highest in clone KKD followed by clone FXM, S. pet-susu clone HB471 and S. sachalinensis clone SEN; the average annual yield of dry mass after the second growing season being 3.09, 2.58, 2.17 and 1.85 kgDM plant?1 for the clones in this order. Plant growth form differed among the clones. Clones FXM and SEN had several shoots of almost uniform base diameter, whereas clones KKD and HB471 showed plagiotropic growth with one thick and several thin shoots. The calorific values of dried stem segments were similar among clones, ranging from 18.7 to 19.1 kJ g?1. The dried stem segments contained 78.9–81.2 wt.% hollocellulose, 27.2–32.3 wt.% lignin and 2.1–4.0 wt.% extractives with ethanol-benzene, depending on clones. Based on these results, we could select four clones (KKD, FXM, HB471 and SEN) suitable for biomass production by SRWC in this area.  相似文献   

10.
Willow short rotation coppice is used as a renewable energy source and also as a vegetation filter for purifying wastewater. Wastewater irrigation might change microclimatic conditions and increase the canopy density in plantations, which might decrease production due to leaf rust (Melampsora epitea). The aim of this study was to estimate the impact of the canopy density on rust abundance on willows. For that, we counted rust pustules on leaves of five different willow clones from dense and sparse areas in both the wastewater irrigated and control part of the plantation. The results demonstrated clear differences between clones; clone ‘81090’ was very susceptible, ‘78183’ susceptible, ‘78021’ fairly tolerant and ‘Tora’ rust resistant. Clone ‘Gudrun’, which was previously reported resistant, had severe rust damages in Estonia. In the case of clones ‘78183’ and ‘78021’ there were significantly more rust pustules per leaf unit area at areas with denser canopy, which confirmed that higher plant density could result in biomass losses caused by leaf rust. No differences, however, were detected between dense and sparse areas of hybrid clone ‘Gudrun’, most probably because in this particular case leaves from upper canopy layer were used. There was a tendency detected that clones with a higher number of shoots per plant had more rust damages on their leaves, however, the correlation was not statistically confirmed. In conclusion, the impact of canopy density on rust abundance is clone-specific and significant in the case of clones on which infection starts from the lower part of the canopy.  相似文献   

11.
Successful purpose-grown willow production systems require regular monitoring of willow growth to apply timely management techniques for increased productivity and timing of harvest for maximizing profit. The objective of this study was to assess the efficacy of a novel method of estimating above-ground willow biomass, involving measuring light attenuation through the willow canopy, to calculate a ‘stem area index’ for relating to harvested willow biomass. Two different willow clones, with contrasting growth form, were used: single stem (Charlie) and multi-stem (SV1). Given the strong correlations (r2 > 0.97; p < 0.05) between the measured stem area index and harvested willow biomass, regardless of growth form, it appears that this simple mensurative technique is a promising alternative for estimating above-ground biomass in short-rotation willow plantations.  相似文献   

12.
Wastewater application to Short Rotation Coppice (SRC) of fast growing trees (willows and poplars) is an attractive alternative to conventional forestry and water purification systems to meet the environmental and renewable energy goals set in European Union (EU). To evaluate the purification efficiency of willow vegetation filter and to describe the response of different commercial willow clones to pre-treated wastewater application, the study was carried out in experimental SRC during last three years of the first five-year-long harvest cycle. Water samples collected from the lysimeters after percolating through the vegetation filter soil (at 40 cm) indicated substantial reduction of pollutants (58% and 70% for total N and P, respectively). The purification efficiency of studied vegetation filter was sufficient to avoid groundwater pollution and meet the legislative limits of Estonian environmental legislation. Wastewater application did not reduce the average plant survival but increased the average number of shoots, plant dry weight (DW) and wood yield per area significantly. The comparison of average shoot DW of clones indicated quite stable growth pattern of different genotypes irrespective of various growing conditions. The average number of shoots of clones 83, 90, 97, Gudrun and Tora was smaller, the shoots were heavier and clones produced more wood than the rest of the studied varieties. Higher planting density or denser irrigation pipe network did not result in substantially higher wood yield. We conclude that willow SRC functioned efficiently as vegetation filter and when combined with growing more productive clones the economically viable yields should be realistic.  相似文献   

13.
Quick and accurate biomass estimation of willow (Salix spp.) grown under short rotation intensive culture (SRIC) is essential for carbon accounting and management decisions. Currently, most estimates of tree biomass, including willow, rely on measurement of stem diameter. This is a suitable approach for single-stem species but for measurements of multi-stem species such as willow, there is an increase in the time and effort required as well as the need to include site, clone and age specific information. Therefore, we developed a new method which calculates optical stem density from digital photographs taken at predetermined locations and angles within a plantation during the fall or winter when the willow is without leaves. We then calibrated a mathematical model using destructive sampling to convert the measurements of optical stem density into estimates of biomass. The method produced very strong relationships (adjusted r2 = 0.97) between the predicted and actual harvested biomass for the plots studied. Being new, the method still requires further testing and possibly adjustments for different planting designs and clones.  相似文献   

14.
This study presents the results of investigations concerning variations in traits that effect structure of biomass yield in eight selected clones of common osier (Salix viminalis L.) from the willow collection at the University of Warmia and Mazury in Olsztyn. Additionally, analysis of clone/genotype interactions with years was performed for these traits. The study was conducted on two clones from the oldest Polish forms of common osier, namely, Paskówka and Gigantea. Three newer collected Polish common osier clones, and three clones from Swedish cultivars of common osier, were also used in this study. Early development stages of willow plants were investigated in field experiments. The study began with the planting of the willows and ended with harvesting after the third year of growth. The experiment was performed in the random block design in three replications. Analysis of variance on the tested clones of common osier with terms of their yield structure traits was performed on plant height, tillering, shoot diameter and yield. The analysis showed that a significant variation between clones begins in the second year of growth. Moreover, a significant genotype and environment interaction was found for all the willow clones, in terms of yield, which is expressed by the weight of one plant. However, this interaction for other traits was significant only in relation to certain clones. In the third year of cultivation old Polish willow clones in comparison with the Swedish and new Polish clones have higher plant weight (yield), tillering and shoot diameter.  相似文献   

15.
In arid regions, reductions in the amount of available agricultural water are fueling interest in alternative, low water-use crops. Perennial grasses have potential as low water-use biofuel crops. However, little is known about which perennial grasses can produce high quantity, high quality yields with low irrigation on formerly high-input agricultural fields in arid regions. We monitored biomass production, weed resistance, rooting depth, and root architecture of nine perennial grasses under multiple irrigation treatments in western Nevada. Under a low irrigation treatment (71 ± 9 cm irrigation water annually), cool-season grasses produced more biomass and were more weed-resistant than warm-season grasses. With additional irrigation (120 ± 12 cm water annually), warm- and cool-season grasses had similar biomass production, but cool-season species remained more weed-resistant. Among species within each grass type, we observed high variability in performance. Two cool-season species (Elytrigia elongata and Leymus cinereus) and one warm-season species (Bothriochloa ischaemum) performed better than the other tested species. Root depth was not correlated with biomass production, but species with deeper roots had fewer weeds. Abundance of fine roots (but not large roots) was correlated with increased biomass and fewer weeds. Both L. cinereus and E. elongata had deep root systems dominated by fine roots, while B. ischaemum had many fine roots in shallow soil but few roots in deeper soil. Cool-season grasses (particularly E. elongata, L. cinereus, and other species with abundant fine roots) may be worthy of further attention as potential biofuel crops for cold desert agriculture.  相似文献   

16.
Optimal fertilization of short rotation coppice (SRC) willow is important both in terms of economic yield and environmental effect. We measured biomass yield and nutrient uptake in two willow clones, Inger and Tordis, grown on a coarse sandy soil and within six different fertilization regimes. Fertilization treatments were carried out during two two-year harvest rotations, beginning in the 2nd growth year of the plantation. Willow was fertilized as follows with names referring to type of fertilizer and total quantities of nitrogen (kg ha−1) in first and second year within both rotations: 1) Control0+0, 2) NPK120+0, 3) Slurry180+0, 4) NPK120+120, 5) NPK240+0, 6) Slurry360+0. Fertilization affected biomass yield significantly but interacted with rotation and clone. In first rotation, fertilization increased dry matter (DM) yield across clones significantly from 3.7 Mg ha−1 y−1 for Control0+0 to 6.5, 6.4 and 5.6 for Slurry360+0, NPK120+120 and NPK240+0, respectively. In second rotation, yield increased from 6.2 Mg ha−1 y−1 to 8.8, 8.2, 7.8 and 7.4 for Slurry360+0, NPK240+0, Slurry180+0 and NPK120+120, respectively. Biomass dry matter yield per ha increased linearly at 15 kg kg−1 of applied total-N in both rotations. The yield increase in response to fertilization was generally larger in Inger than in Tordis. In general, element concentration in the harvested biomass was either unaffected or slightly reduced by fertilization. In conclusion, yield response to fertilization appears to be primarily related to the quantity of N applied but the effect depended on fertilizer type, harvest rotation and willow clone.  相似文献   

17.
《Biomass & bioenergy》2007,31(5):267-275
During the last three decades, oil crises, agricultural surpluses and global climate change enhanced the interest in short-rotation forestry (SRF). In this study, the biomass production of birch (Betula pendula Roth), maple (Acer pseudoplatanus L.—Tintigny), poplar (Populus trichocarpa × deltoides—Hoogvorst) and willow (Salix viminalis—Orm) growing under a short-rotation (SR) management system were compared after a 4 years period. The plantation was established on former agricultural land. The sandy soil had a mean pH of 4.5 and a mean carbon content of 1.0%. Survival rates after 4 years were 75.8%, 96.8%, 86.3% and 97.6% for birch, maple, poplar and willow, respectively. The mean actual annual biomass production for these four species amounted to 2.6, 1.2, 3.5 and 3.4 t DM ha−1 yr−1, respectively. The large variation in biomass production at the different plots of the plantation could not be explained by the measured soil parameters. Biomass production results found here were in the lower range of values reported in literature. However, in contrast to most other studies, no weed control, fertilisation or irrigation was applied in this experiment. As marginal agricultural soils are suboptimal for the growth of poplar and willow, birch can be considered as a very interesting alternative for the establishment of SR plantations in Flanders.  相似文献   

18.
Adding nutrient-rich residues such as municipal wastewater and sludge to willow and poplar short-rotation coppice gives more cost-effective and sustainable cultivation, but leaching to groundwater and disturbance to plant growth must be avoided. The effects of adding municipal wastewater irrigation to willows and poplars and sewage sludge to willows were compared in a two-year experiment. Wastewater irrigation enhanced plant growth. Near-zero nitrate-N concentrations occurred in drainage water when the root system of both species was well-established. The ability to retain N and P was satisfactory when poplars and willows were irrigated with wastewater. Thus relatively high additions of N and P with wastewater will probably not contaminate groundwater, but potential P leaching should not be underestimated. The same applies for sewage sludge applications to willow.  相似文献   

19.
20.
New Poplar clones for biomass production are currently under evaluation in Italy to be cultivated in Mediterranean site conditions, where the evapotranspirative demand is not balanced by rainfall supply. The study aims to evaluate the dynamic responses of leaf gas exchanges, budding, foliar morphology and yield in three modern hybrids Poplar clones (AF2, AF6 and Monviso) under non-irrigated and suboptimal site conditions in a Short Rotation Forestry plantation of Central Italy. During the drought season, the stomatal closure was gradual in AF2 and AF6 but rapid in Monviso. These traits were associated with the best yields (expressed as dry matter) in AF2 (8.74 Mg ha−1 year−1) and AF6 (6.53 Mg ha−1 year−1) compared to Monviso (5.72 Mg ha−1 year−1). Monviso was advised as sensitive clone to summer drought even if it has showed higher photosynthetic potential traits such as earlier budding and maximum leaf area. AF2 and AF6 were advised as tolerant and moderately-tolerant clones to summer drought as they maintained higher and relatively-higher stomatal conductance (gs) values over a growing season, summer photosynthetic assimilation rates (A) and intrinsic water-use efficiency (A/gs ratio) compared to Monviso, respectively. We pointed out the occurrence of main physiological processes (budding, maximum and minimum gs, maximum leaf area) to highlight the key-periods leading the growth under these site conditions by identifying the air temperature thresholds and precipitation patterns along a growing season. We provided recommendations to Italian Poplar practitioners for cultivations of these clones in Mediterranean areas affected by summer drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号