首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
DNA helicase and polymerase work cooperatively at the replication fork to perform leading-strand DNA synthesis. It was believed that the helicase migrates to the forefront of the replication fork where it unwinds the duplex to provide templates for DNA polymerases. However, the molecular basis of the helicase-polymerase coupling is not fully understood. The recently elucidated T7 replisome structure suggests that the helicase and polymerase sandwich parental DNA and each enzyme pulls a daughter strand in opposite directions. Interestingly, the T7 polymerase, but not the helicase, carries the parental DNA with a positively charged cleft and stacks at the fork opening using a β-hairpin loop. Here, we created and characterized T7 polymerases each with a perturbed β-hairpin loop and positively charged cleft. Mutations on both structural elements significantly reduced the strand-displacement synthesis by T7 polymerase but had only a minor effect on DNA synthesis performed against a linear DNA substrate. Moreover, the aforementioned mutations eliminated synergistic helicase-polymerase binding and unwinding at the DNA fork and processive fork progressions. Thus, our data suggested that T7 polymerase plays a dominant role in helicase-polymerase coupling and replisome progression.  相似文献   

2.
Thermostable bacterial polymerases like Taq, Therminator and Vent exo? are able to perform DNA synthesis by using modified DNA precursors, a property that is exploited in several therapeutic and biotechnological applications. Viral polymerases are also known to accept modified substrates, and this has proven crucial in the development of antiviral therapies. However, non‐thermostable polymerases of bacterial origin, or engineered variants, that have similar substrate tolerance and could be used for synthetic biology purposes remain to be identified. We have identified the α subunit of Escherichia coli polymerase III (Pol III α) as a bacterial polymerase that is able to recognise and process as substrates several pyrophosphate‐modified dATP analogues in place of its natural substrate dATP for template‐directed DNA synthesis. A number of dATP analogues featuring a modified pyrophosphate group were able to serve as substrates during enzymatic DNA synthesis by Pol III α. Features such as the presence of potentially chelating chemical groups and the size and spatial flexibility of the chemical structure seem to be of major importance for the modified leaving group to play its role during the enzymatic reaction. In addition, we could establish that if the pyrophosphate group is altered, deoxynucleotide incorporation proceeds with an efficiency varying with the nature of the nucleobase. Our results represent a great step towards the achievement of a system of artificial DNA synthesis hosted by E. coli and involving the use of altered nucleotide precursors for nucleic acid synthesis.  相似文献   

3.
The in vitro MutaGen procedure is a new random mutagenesis method based on the use of low-fidelity DNA polymerases. In the present study, this technique was applied on a 2 kb gene encoding amylosucrase, an attractive enzyme for the industrial synthesis of amylose-like polymers. Mutations were first introduced during a single replicating step performed by mutagenic polymerases pol beta and pol eta. Three large libraries (>10(5) independent clones) were generated (one with pol beta and two with pol eta). The sequence analysis of randomly chosen clones confirmed the potential of this strategy for the generation of diversity. Variants generated by pol beta were 4-7-fold less mutated than those created with pol eta, indicating that our approach enables mutation rate control following the DNA polymerase employed for mutagenesis. Moreover, pol beta and pol eta provide different and complementary mutation spectra, allowing a wider sequence space exploration than error-prone PCR protocols employing Taq polymerase. Interestingly, some of the variants generated by pol eta displayed unusual modifications, including combinations of base substitutions and codon deletions which are rarely generated using other methods. By taking advantage of the mutation bias of naturally highly error-prone DNA polymerases, MutaGen thus appears as a very useful tool for gene and protein randomisation.  相似文献   

4.
The vast majority of DNA polymerases use the complementary templating strand of DNA to guide each nucleotide incorporation. There are instances, however, in which polymerases can efficiently incorporate nucleotides in the absence of templating information. This process, known as translesion DNA synthesis, can alter the proper genetic code of an organism. To further elucidate the mechanism of template-independent DNA synthesis, we monitored the incorporation of various nucleotides at the "blunt-end" of duplex DNA by the high-fidelity bacteriophage T4 DNA polymerase. Although natural nucleotides are not incorporated at the blunt-end, a limited subset of non-natural indolyl analogues containing extensive pi-electron surface areas are efficiently utilized by the T4 DNA polymerase. These analogues possess high binding affinities that are remarkably similar to those measured during incorporation opposite an abasic site. In contrast, the k(pol) values are significantly lower during blunt-end extension when compared to incorporation opposite an abasic site. These kinetic differences suggest that the single-stranded region of the DNA template plays an important role during polymerization through stacking interactions with downstream bases, interactions with key amino acid residues, or both. In addition, we demonstrate that terminal deoxynucleotide transferase, a template-independent enzyme, can efficiently incorporate many of these non-natural nucleotides. However, that this unique polymerase cannot extend large, bulky non-natural nucleotides suggests that elongation is limited by steric constraints imposed by structural features present within the polymerase. Regardless, the kinetic data obtained from using either DNA polymerase indicate that template-independent synthesis can occur without the contributions of hydrogen-bonding interactions and suggest that pi-electron interactions play an important role in polymerization efficiency when templating information is not present.  相似文献   

5.
Genotoxic stress results in more than 50 000 damaged DNA sites per cell per day. During DNA replication, processive high‐fidelity DNA polymerases generally stall at DNA lesions and have to be displaced by translesion synthesis DNA polymerases, which are able to bypass the lesion. This switch is mediated by mono‐ubiquitination of the processivity factor proliferating cell nuclear antigen (PCNA). To further investigate the regulation of the DNA polymerase exchange, we developed an easy and efficient method to synthesize site‐specifically mono‐ubiquitinated PCNA by click chemistry. By incorporating artificial amino acids that carry an azide (Aha) or an alkyne (Plk) in their side chains, into ubiquitin (Ub) and PCNA, respectively, we were able to link the two proteins site‐specifically by the CuI‐catalyzed azide–alkyne cycloaddition. Finally, we show that the synthetic PCNA–Ub is able to stimulate DNA synthesis by DNA polymerase δ, and that DNA polymerase η has a higher affinity for PCNA–Ub than to PCNA.  相似文献   

6.
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein–protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein–protein interactions is an urgent scientific task.  相似文献   

7.
TENT4A (PAPD7) is a non-canonical poly(A) polymerase, of which little is known. Here, we show that TENT4A regulates multiple biological pathways and focuses on its multilayer regulation of translesion DNA synthesis (TLS), in which error-prone DNA polymerases bypass unrepaired DNA lesions. We show that TENT4A regulates mRNA stability and/or translation of DNA polymerase η and RAD18 E3 ligase, which guides the polymerase to replication stalling sites and monoubiquitinates PCNA, thereby enabling recruitment of error-prone DNA polymerases to damaged DNA sites. Remarkably, in addition to the effect on RAD18 mRNA stability via controlling its poly(A) tail, TENT4A indirectly regulates RAD18 via the tumor suppressor CYLD and via the long non-coding antisense RNA PAXIP1-AS2, which had no known function. Knocking down the expression of TENT4A or CYLD, or overexpression of PAXIP1-AS2 led each to reduced amounts of the RAD18 protein and DNA polymerase η, leading to reduced TLS, highlighting PAXIP1-AS2 as a new TLS regulator. Bioinformatics analysis revealed that TLS error-prone DNA polymerase genes and their TENT4A-related regulators are frequently mutated in endometrial cancer genomes, suggesting that TLS is dysregulated in this cancer.  相似文献   

8.
With increasing temperature, nucleobases in DNA become increasingly damaged by hydrolysis of exocyclic amines. The most prominent damage includes the conversion of cytosine to uracil and adenine to hypoxanthine. These damages are mutagenic and put the integrity of the genome at risk if not repaired appropriately. Several archaea live at elevated temperatures and thus, are exposed to a higher risk of deamination. Earlier studies have shown that DNA polymerases of archaea have the property of sensing deaminated nucleobases in the DNA template and thereby stalling the DNA synthesis during DNA replication providing another layer of DNA damage recognition and repair. However, the structural basis of uracil and hypoxanthine sensing by archaeal B-family DNA polymerases is sparse. Here we report on three new crystal structures of the archaeal B-family DNA polymerase from Thermococcus kodakarensis (KOD) DNA polymerase in complex with primer and template strands that have extended single stranded DNA template 5’-overhangs. These overhangs contain either the canonical nucleobases as well as uracil or hypoxanthine, respectively, and provide unprecedented structural insights into their recognition by archaeal B-family DNA polymerases.  相似文献   

9.
The replication of damaged DNA is a promutagenic process that can lead to disease development. This report evaluates the dynamics of nucleotide incorporation opposite an abasic site, a commonly formed DNA lesion, by using two fluorescent nucleotide analogues, 2-aminopurine deoxyribose triphosphate (2-APTP) and 5-phenylindole deoxyribose triphosphate (5-PhITP). In both cases, the kinetics of incorporation were compared by using a 32P-radiolabel extension assay versus a fluorescence-quenching assay. Although 2-APTP is efficiently incorporated opposite a templating nucleobase (thymine), the kinetics for incorporation opposite an abasic site are significantly slower. The lower catalytic efficiency hinders its use as a probe to study translesion DNA synthesis. In contrast, the rate constant for the incorporation of 5-PhITP opposite the DNA lesion is 100-fold faster than that for 2-APTP. Nearly identical kinetic parameters are obtained from fluorescence quenching or the 32P-radiolabel assay. Surprisingly, distinct differences in the kinetics of 5-PhITP incorporation opposite the DNA lesion are detected when using either bacteriophage T4 DNA polymerase or the Escherichia coli Klenow fragment. These differences suggest that the dynamics of nucleotide incorporation opposite an abasic site are polymerase-dependent. Collectively, these data indicate that 5-PhITP can be used to perform real-time analyses of translesion DNA synthesis as well as to functionally probe differences in polymerase function.  相似文献   

10.
The selectivity of DNA polymerases for processing the canonical nucleotide and DNA substrate in favor of the noncanonical ones is the key to the integrity of the genome of every living species and to many biotechnological applications. The inborn ability of most DNA polymerases to abort efficient extension of mismatched DNA substrates adds to the overall DNA polymerase selectivity. DNA polymerases have been grouped into families according to their sequence. Within family A DNA polymerases, six motifs that come into contact with the substrates and form the active site have been discovered to be evolutionary highly conserved. Here we present results obtained from amino acid randomization within one motif, motif C, of thermostable Thermus aquaticus DNA polymerase. We have identified several distinct mutation patterns that increase the selectivity of mismatch extension. These results might lead to direct applications such as allele-specific PCR, as demonstrated by real-time PCR experiments and add to our understanding of DNA polymerase selectivity.  相似文献   

11.
12.
DNA polymerases catalyze DNA synthesis during the replication, repair, and recombination of DNA. Based on phylogenetic analysis and primary protein sequences, DNA polymerases have been categorized into seven families: A, B, C, D, X, Y, and RT. This review presents generalized data on the catalytic mechanism of action of DNA polymerases. The structural features of different DNA polymerase families are described in detail. The discussion highlights the kinetics and conformational dynamics of DNA polymerases from all known polymerase families during DNA synthesis.  相似文献   

13.
Base editors are genome editing tools that enable site-specific base conversions through the chemical modification of nucleobases in DNA. Adenine base editors (ABEs) convert A ⋅ T to G ⋅ C base pairs in DNA by using an adenosine deaminase enzyme to modify target adenosines to inosine intermediates. Due to the lack of a naturally occurring adenosine deaminase that can modify DNA, ABEs were evolved from a tRNA-deaminating enzyme, TadA. Previous experiments with an ABE comprising a wild-type (wt) TadA showed no detectable activity on DNA, and directed evolution was therefore required to enable this enzyme to accept DNA as a substrate. Here we show that wtTadA can perform base editing in DNA in both bacterial and mammalian cells, with a strict sequence motif requirement of TA C. We leveraged this discovery to optimize a reporter assay to detect base editing levels as low as 0.01 %. Finally, we used this assay along with molecular dynamics simulations of full ABE:DNA complexes to better understand how the sequence recognition of mutant TadA variants change as they accumulate mutations to better edit DNA substrates.  相似文献   

14.
Previous studies of polymerase synthesis of base‐modified DNAs and their cleavage by restriction enzymes have mostly related only to 5‐substituted pyrimidine and 7‐substituted 7‐deazaadenine nucleotides. Here we report the synthesis of a series of 7‐substituted 7‐deazaguanine 2′‐deoxyribonucleoside 5′‐O‐triphosphates (dGRTPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dGRTPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7‐substituted 7‐deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.  相似文献   

15.
16.
The spontaneous depurination of genomic DNA occurs frequently and generates apurinic/pyrimidinic (AP) site damage that is mutagenic or lethal to cells. Error-prone DNA polymerases are specifically responsible for the translesion synthesis (TLS) of specific DNA damage, such as AP site damage, generally with relatively low fidelity. The Y-family DNA polymerases are the main error-prone DNA polymerases, and they employ three mechanisms to perform TLS, including template-skipping, dNTP-stabilized misalignment, and misincorporation-misalignment. The bypass mechanism of the dinB homolog (Dbh), an archaeal Y-family DNA polymerase from Sulfolobus acidocaldarius, is unclear and needs to be confirmed. In this study, we show that the Dbh primarily uses template skipping accompanied by dNTP-stabilized misalignment to bypass AP site analogs, and the incorporation of the first nucleotide across the AP site is the most difficult. Furthermore, based on the reported crystal structures, we confirmed that three conserved residues (Y249, R333, and I295) in the little finger (LF) domain and residue K78 in the palm subdomain of the catalytic core domain are very important for TLS. These results deepen our understanding of how archaeal Y-family DNA polymerases deal with intracellular AP site damage and provide a biochemical basis for elucidating the intracellular function of these polymerases.  相似文献   

17.
Human NEIL2 DNA glycosylase (hNEIL2) is a base excision repair protein that removes oxidative lesions from DNA. A distinctive feature of hNEIL2 is its preference for the lesions in bubbles and other non-canonical DNA structures. Although a number of associations of polymorphisms in the hNEIL2 gene were reported, there is little data on the functionality of the encoded protein variants, as follows: only hNEIL2 R103Q was described as unaffected, and R257L, as less proficient in supporting the repair in a reconstituted system. Here, we report the biochemical characterization of two hNEIL2 variants found as polymorphisms in the general population, R103W and P304T. Arg103 is located in a long disordered segment within the N-terminal domain of hNEIL2, while Pro304 occupies a position in the β-turn of the DNA-binding zinc finger motif. Similar to the wild-type protein, both of the variants could catalyze base excision and nick DNA by β-elimination but demonstrated a lower affinity for DNA. Steady-state kinetics indicates that the P304T variant has its catalytic efficiency (in terms of kcat/KM) reduced ~5-fold compared with the wild-type hNEIL2, whereas the R103W enzyme is much less affected. The P304T variant was also less proficient than the wild-type, or R103W hNEIL2, in the removal of damaged bases from single-stranded and bubble-containing DNA. Overall, hNEIL2 P304T could be worthy of a detailed epidemiological analysis as a possible cancer risk modifier.  相似文献   

18.
DNA polymerase β (Pol β) is a frequently overexpressed and/or mutated bifunctional repair enzyme. Pol β possesses polymerase and lyase active sites, that are employed in two steps of base excision repair. Pol β is an attractive therapeutic target for which there is a need for inhibitors. Two mechanistically inspired covalent inhibitors ( 1 , IC50=21.0 μM; 9 , IC50=18.7 μM) that modify lysine residues in different Pol β active sites are characterized. Despite modifying lysine residues in different active sites, 1 and 9 inactivate the polymerase and lyase activities of Pol β. Fluorescence anisotropy experiments indicate that they do so by preventing DNA binding. Inhibitors 1 and 9 provide the basis for a general approach to preparing domain selective inhibitors of bifunctional polymerases. Such molecules could prove to be useful tools for studying the role of wild type and mutant forms of Pol β and other polymerases in DNA repair.  相似文献   

19.
We report on significantly increased selectivity of real-time PCR through employment of primer probes that bear hydrophobic 4'C modifications at the 3'-terminal nucleotide. The primer probes were designed to bind the target sequences in such a way that the 3'-terminal nucleotide defines whether a matched or a single mismatched basepair is present depending on the respective target sequence. Several commercially available thermostable DNA polymerases belonging to different DNA polymerase families were tested for their efficacy in discriminating between PCR amplification of matched substrates and duplexes that contain a single mismatch. It turned out that, depending on the 4'C modification and the employed DNA polymerase, significantly increased differentiation between single matches and mismatches could be observed with real-time PCR. The degrees of the observed effects varied with the employed 4'C modification and the sequence context studied. The system is robust enough to work faithfully under several buffer conditions. Our approach should be useful for the direct diagnosis of single nucleotide variations within genes, like single nucleotide polymorphisms or mutations, by PCR without the need for further time- and cost-intensive post-PCR analysis.  相似文献   

20.
Recently, α-L-threofuranosyl nucleoside 3'-triphosphates (tNTPs) have been reported to be incorporated into DNA by DNA polymerases. Isonucleosides especially the 2'-deoxy-2'-isonucleosides, would be considered regioisomers of α-L-threofuranosyl nucleosides. Therefore, we investigated the synthesis of 2'-deoxy-2'-isonucleoside 5'-triphosphates (iNTPs) having the four natural nucleobases and their incorporation into primer-template duplexes consisting of oligonucleotides containing natural 2'-deoxyribonucleosides and 2'-deoxy-2'-isonucleosides by using primer-extension reactions. We found that Klenow fragment (exo-; an A-family DNA polymerase) has strict recognition of the shape of nucleoside 5'-triphosphates and Therminator (a B-family DNA polymerase) has strict recognition of the shape of primer-template complexes, especially two base pairs upstream of the primer 3' terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号