首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrogen-assisted fracture of AISI type 304 steel has been evaluated with a special focus on the strain-induced martensite that is produced below the specimen surface during standard turning operation. Two different surface conditions were investigated: one containing martensite, resulting from the machining process, and a martensite-free state which is obtained after a proper heat treatment. Additionally, chemical composition and thickness of oxide layers, occurring in both studied cases, were analyzed by secondary ion mass spectrometry. These two different conditions were tested at room temperature in air (ambient pressure) and in hydrogen gas (40 MPa) atmosphere, respectively. Experimental results reveal a detrimental effect of machining-induced martensite on AISI type 304 steel performance in hydrogen, leading to major differences in relative reduction of area (RRA) between the as-machined and the heat-treated state for the same material. In this context, an operating mechanism based on hydrogen diffusion is discussed.  相似文献   

2.
In the present work, an investigation on the susceptibility to hydrogen embrittlement of AISI 304 and 310 austenitic stainless steels was performed. The hydrogen embrittlement process leads to degradation of mechanical properties and can be accelerated by the presence of surface defects combined with elevated surface hardness. Tensile test specimens of the selected materials were machined by turning with different cutting parameters in order to create variations in surface finish conditions. The samples thus prepared were submitted to tensile tests before and after hydrogen permeation by cathodic charging. Regarding the AISI 304 steel, it was possible to notice that the presence of strain-induced martensite on the material surface led to severe hydrogen embrittlement. In the case of the AISI 310 steel, due to its higher nickel amount, no martensite formation could be detected, and this steel was found to be less susceptible to embrittlement in the tested conditions.  相似文献   

3.
This study investigated the influence of segregations on hydrogen environment embrittlement (HEE) of AISI 304L type austenitic stainless steels. The microstructure of tensile specimens, that were fabricated from commercially available AISI 304L steels and tested by means of small strain-rate tensile tests in air as well as hydrogen gas at room temperature, was investigated by means of combined EDS and EBSD measurements. It was shown that two different austenitic stainless steels having the same nominal alloy composition can exhibit different susceptibilities to HEE due to segregation effects resulting from different production routes (continuous casting/electroslag remelting). Local segregation-related variations of the austenite stability were evaluated by thermodynamic and empirical calculations. The alloying element Ni exhibits pronounced segregation bands parallel to the rolling direction of the material, which strongly influences the local austenite stability. The latter was revealed by generating and evaluating two-dimensional distribution maps for the austenite stability. The formation of deformation-induced martensite was shown to be restricted to segregation bands with a low Ni content. Furthermore, it was shown that the formation of hydrogen induced surface cracks is strongly coupled with the existence of surface regions of low Ni content and accordingly low austenite stability. In addition, the growth behavior of hydrogen-induced cracks was linked to the segregation-related local austenite stability.  相似文献   

4.
We introduced a coupled peridynamic hydrogen diffusion and fracture model to solve the hydrogen embrittlement fracture of low alloy steel AISI 4340. In this model, the influence of temperature on hydrogen diffusion coefficient is considered, and a new peridynamic constitutive analysis method is used to simulate the crack propagation of hydrogen embrittlement. We verified the model in 3D using the experimental test of the hydrogen embrittlement cracking process of AISI 4340 steel in 0.1 N H2SO4 solution from the literature. Considering different ambient temperatures, it is found that the crack propagation is highly similar to the experimental results. Based on the numerical analysis of peridynamics, the model can numerically simulate the hydrogen embrittlement fracture of AISI 4340 steel, and obtain a visual demonstration of the entire process of hydrogen atom diffusion and crack growth.  相似文献   

5.
This work summarises the results obtained from a failure analysis of a pipe crack in a BWR water clean-up system. The cracking occurred in an AISI 304 steel pipe section area where mixing of the water streams at two different temperatures (280° and 130°C) took place. The temperature difference and turbulence induced a cyclic thermal loading which, together with the environment, caused cracking. Cracking propagated as transgranular brittle cleavage-like fracture, probably on a stress level below yield stress. Cracking was still observed in areas where the cyclic temperature differences caused by turbulence were markedly lower. The AISI 304 steel was in fully solution annealed as-receiv?d condition.  相似文献   

6.
Determination of initiation fracture toughness of ductile materials is a challenging task due to the ambiguity associated with the identification of the point of departure of the initial linear region of the fracture resistance curve. Acoustic emission (AE) is a technique that is capable of directly indicating the crack initiation point during fracture toughness tests using a single specimen. The objective of this investigation is to illustrate some results related to monotonic and cyclic fracture behaviour of AISI 304LN weldments estimated by this ‘combined type’ experiment. The use of cyclic J-integral tests has been proposed to simulate the deleterious effect of periodic load reversals during monotonic loading. A comparative analysis of all these data leads to the conclusion that the fracture toughness of a material determined from AE parameters is generally conservative compared to that obtained by conventional techniques.  相似文献   

7.
The aim of this paper is to study the effect of the displacement rate on the fracture toughness under internal hydrogen of two different structural steels grades used in energy applications. To this end, steel specimens were pre-charged with gaseous hydrogen at 19.5 MPa and 450 °C for 21 h and then fracture toughness tests were carried out in air at room temperature. Permeation experiments were also conducted to obtain the hydrogen diffusion coefficients of the steels. It was observed that the lower the displacement rate and the higher the steel yield strength, the stronger the reduction in fracture toughness due to the presence of internal hydrogen. A change in the fracture micromechanism was also detected. All these findings were justified in terms of hydrogen diffusion and accumulation in the crack front region in the different steel specimens.  相似文献   

8.
The effects of rolling on the hydrogen-assisted fatigue crack growth characteristics of AISI 301, 304L and 310S stainless steels (SSs) were investigated. In hydrogen, cold rolled specimens with a 20% thickness reduction were found to increase the fatigue crack growth rates (FCGRs) in the 301 and 304L SSs, and to a much lesser extent in the 310S SS. However, enhanced slip was observed for the 310S specimen in hydrogen. Hydrogen-accelerated FCGRs of the 301 and 304L SSs were related with the crack growth through the strain-induced martensite formed in the plastic zone ahead of the crack tip.  相似文献   

9.
The effect of high-pressure gaseous H2 on the fracture behavior of pipeline steel X70 and austenitic stainless steel type 304L and 316L was investigated by means of notched-tensile tests at 10 MPa H2 gas and various test speed. The notch tensile strength of pipeline X70 steel and austenitic stainless steels were degraded by gaseous H2, and the deterioration was accompanied by noticeable changes in fracture morphology. The loss of notch tensile strength of type 316L and X70 steels was comparable, but type 304L was more susceptible to hydrogen embrittlement than the others. In the X70 steel, hydrogen embrittlement increased as test speed decreased until the test speed reached 1.2 × 10?3 mm/s, but the effect of test speed was not significant in 304L and 316L steels.  相似文献   

10.
The AISI 304 and AISI 1018 steels (frequently used in solar collectors’ plants) in contact with four different ionic liquids (ILs) suitable as diathermic fluids, were studied. Immersion tests were performed at 220 °C (the working temperature in such plants) for 10 days. The corrosion morphologies of the steels were investigated by scanning electron microscopy coupled with energy dispersive X-ray (EDX) microanalysis and the content of metals in the solution were detected via ICP-OES. The tests showed that the most performing IL is the ethyl-dimethyl-propyl-ammonium-bis(trifluoromethylsulphonyl)imide. The corrosion properties of the two alloys in contact with such IL were investigated by means of Tafel plots and resistance polarization at room temperature in open-to-air vessels.  相似文献   

11.
The focus of this study is to analyze hydrogen embrittlement susceptibility of a modified AISI 4130 steel by means of incremental step loading tests. Three different microstructures with a hardness of 40 HRC were analyzed: martensite with large and small prior austenite grains and dual-phase (martensite/ferrite). According to the results, the dual-phase microstructure presented the lowest hydrogen embrittlement susceptibility and martensite with large prior austenite grains, the highest. This behavior was attributed to the lower fraction of high-angle boundaries presented by the martensite with large prior austenite grains, which led to a higher diffusible hydrogen content. Moreover, the ferrite local deformation in the dual-phase microstructure enhanced its hydrogen embrittlement resistance by lowering the stress concentration. A synergic effect of decohesion and localized plasticity was identified on the hydrogen induced fracture of the tested microstructures leading to an intergranular + quasi-cleavage fracture in the martensite and quasi-cleavage in the dual-phase microstructure.  相似文献   

12.
Microstructural response of AISI 316L stainless steel to laser peening (LP) was examined by means of optical microscopy (OM) and transmission electron microscopy (TEM) in order to analyze the effects of LP on hydrogen-induced cracking (HIC) resistance. Depth profiles of near-surface microhardness and surface compressive residual stress (CRS) of LP treated specimens were presented respectively. Slow strain rate tensile tests were performed on the hydrogen-charged samples and their corresponding stress-strain curves as well as fracture morphologies were finally investigated in detail. The results demonstrated that LP induced a grain refinement effect on the treated surface while a maximum refining rate of 56.18% was achieved at the laser power density of 10 GW/cm2. The near-surface microhardness also exhibited an attenuation trend with the increasing depth. The surface CRS positively correlated with power density before it reached a threshold value. A special U-shaped dislocation tangle band was observed in the LP treated specimen which served as hydrogen trapping sites. The LP treated samples exhibited better toughness after hydrogen charging from both macro mechanical properties and micro fracture morphologies. LP-induced grain refinement and CRS are believed to be the main contributing factors towards inhibiting the diffusion of hydrogen atoms which ultimately leads to the reduction of the hydrogen embrittlement sensitivity of AISI 316L stainless steel.  相似文献   

13.
Seventeen metastable austenitic stainless steels (type 304 and 316 alloys) were tested in tension both with internal hydrogen and in external hydrogen. Hydrogen-assisted fracture in both environments is a competition between hydrogen-affected ductile overload and hydrogen-assisted crack propagation. In general, hydrogen localizes the fracture process, which results in crack propagation of particularly susceptible materials at an apparent engineering stress that is less than the tensile strength of the material. Hydrogen-assisted crack propagation in this class of alloys becomes more prevalent at lower nickel content and lower temperature. In addition, for the tests in this study, external hydrogen reduces tensile ductility more than internal hydrogen. External hydrogen promotes crack initiation and propagation at the surface, while with internal hydrogen surface cracking is largely absent, thus preempting hydrogen-assisted crack propagation from the surface. This is not a general result, however, because the reduction of ductility with internal and external hydrogen depends on the specifics of the testing conditions that are compared (e.g., hydrogen gas pressure); in addition, internal hydrogen can promote the formation of internal cracks, which can propagate similar to surface cracks.  相似文献   

14.
Hydrogen is considered to be the most promising candidate as a future energy carrier. One of the most used technologies for the electrolytic hydrogen production is alkaline water electrolysis. However, due to the high energy requirements, the cost of hydrogen produced in such a way is high.In continuous search to improve this process using advanced electrocatalytic materials for the hydrogen evolution reaction (HER), high area NiCo/Zn electrodes were prepared on AISI 304 stainless steel substrates by electrodeposition. After preparing, the alloys were leached of to remove part of the zinc and generate a porous layer (type Raney electrodes). The presence of a thin Ni layer between the substrate and the Raney coating favour the adherence of the latter. The porous NiCo/Zn electrode was characterized by SEM, EDX, confocal laser microscopy, and electrochemical impedance spectroscopy. HER on this electrode was evaluated in 30 wt.% KOH solution by means of polarization curves, hydrogen discharge curves, and galvanostatic tests. Results show that the developed electrode presents a most efficient behaviour for HER when comparing with the smooth Ni cathode. The high electrode activity was mainly attributed to the high surface area of the developed electrode.  相似文献   

15.
The paper presents an axisymmetric finite element model to study hydrogen-assisted cracking (HAC) in a circumferentially notched tensile (CNT) specimen of a high-strength steel. The model includes an axisymmetric 2-D stress analysis coupled with an axisymmetric 1-D hydrogen diffusion analysis. Crack initiation is handled through cohesive elements whose strength is adjusted depending on the local hydrogen concentration. The model successfully predicted the critical SIFs of tempered AISI 4340 under different hydrogen charging conditions in rising displacement tests. Furthermore, the model is able to simulate of typical delayed failure of specimens under HAC conditions in constant load tests. Reported HAC of three different microstructures of AISI 4340 was simulated under rising displacement condition, and the respective model parameters were then also used to simulate crack initiation in the same microstructures under constant load condition. Closeness of critical SIFs from both the simulations indicates that the model parameters calibrated through slow strain rate tests are transferable to constant load situations. Moreover, it is shown that the present 2-D analysis, while being computationally advantageous, is an acceptable alternative of a 3-D model reported earlier.  相似文献   

16.
In this study, the feasibility of the fusion sensing of eddy current testing (ECT) and ultrasonic testing (UT) as effective tools to clarify the hydrogen-embrittlement mechanism of austenitic stainless steels was investigated. Fatigue testing was conducted on hydrogen-charged and uncharged AISI 304 specimens. The effect of hydrogen exposure on the martensitic transformation, and crack closure and crack face morphology were investigated by ECT and UT. The results suggest that a comparison of ECT and UT results can evaluate martensitic transformation and crack closure and crack face morphology, which are important in understanding the hydrogen embrittlement of austenitic stainless steels.  相似文献   

17.
The phenomenon of hydrogen embrittlement phenomenon is known to be a major obstacle to proposed to overcome this phenomenon. In the present study, polytetrafluoroethylene (PTFE), which is known to be an effective hydrogen adsorption and desorption material, was coated on the surface of stainless steel 304 to improve its hydrogen embrittlement resistance. To make a hydrogen embrittlement environment, electrochemical hydrogen pre-charging was applied to the PTFE-coated stainless steel 304. To investigate the effects of PTFE coating on the hydrogen embrittlement resistance of stainless steel 304, the Charpy V-notch impact (CVN) test was performed under three different temperatures: 25, −83, and −196 °C. Additionally, hydrogen concentration, electron back scatter diffraction (EBSD), and scanning electron microscopy (SEM) evaluations were carried out to verify the results of the CVN impact test. The PTFE coating did not have a significant effect on the quantitative reduction of hydrogen concentration; however, we confirmed its excellent performance in terms of toughness reduction due to the increase in hydrogen loading time at room temperature.  相似文献   

18.
A novel high-aluminum austenitic stainless steel has been produced in the laboratory with the aim of developing a lean-alloyed material with a high resistance to hydrogen environment embrittlement. The susceptibility to hydrogen environment embrittlement was evaluated by means of tensile tests at a slow strain rate in pure hydrogen gas at a pressure of 40 MPa and a temperature of −50 °C. Under these conditions, the yield strength, tensile strength and elongation to rupture are not affected by hydrogen in comparison to companion tests carried out in air. Moreover, a very high ductility in hydrogen is evidenced by a reduction of area of 70% in the high-pressure and low-temperature hydrogen environment. The lean degree of alloying is reflected in the molybdenum-free character of the material and a nickel content of 8.0 wt.%. With regard to the alloy concept, a combination of high-carbon, high-manganese, and high-aluminum contents confer an extremely high stability against the formation of strain-induced martensite. This aspect was investigated by means of in-situ magnetic measurements and ex-situ X-ray diffraction. The overall performance of the novel alloy was compared with two reference materials, 304L and 316L austenitic stainless steels, both industrially produced. Its capability of maintaining a fully austenitic structure during tensile testing has been identified as a key aspect to avoid hydrogen environment embrittlement.  相似文献   

19.
Abstract

A systematic study has been undertaken to correlate the changes in acoustic emissions during tensile deformation of sensitised AISI type 304 stainless steel. Samples of a typical 304 stainless steel were sensitised at 700°C for 4, 14 and 24 h after being austenised at 1050°C for 30 min. AE signals were recorded during tensile test by using two sensors with 125 kHz resonant frequency. The results showed significant change in generation of AE during tensile deformation of sensitised AISI 304 stainless steel in compare to solution annealed material. This type of behaviour could be attributed to the microstructural changes in the sensitised specimens especially formation of continuous Cr23C6 carbides on grain boundaries which lead to increase in shearing by dislocations.  相似文献   

20.
本文对AISI 3 0 4钢薄板的埋弧焊工艺进行了试验研究。并对焊材性能进行了工艺试验 ,在对试验结果分析的基础上确定了最佳焊接工艺参数。焊接接头的各项力学性能实验结果完全满足图纸要求。通过采取先进的焊接工艺装备 ,成功实现不锈钢薄壁筒体的焊接  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号