共查询到20条相似文献,搜索用时 140 毫秒
1.
一种有效的关联规则增量式更新算法 总被引:6,自引:2,他引:6
关联规则是数据挖掘中的一个重要研究内容。目前已经提出了许多用于高效地发现大规模数据库中的关联规则的算法,而对已发现规则的更新及维护问题的研究却较少。文章提出了基于频繁模式树的关联规则增量式更新算法,以处理事务数据库中增加了新的事务数据集后相应关联规则的更新问题,并对其性能进行了分析。 相似文献
2.
3.
一种新的关联规则增量式更新算法 总被引:8,自引:0,他引:8
首先提出了一个新的概念-后备频繁项目集,其次给出了一种新的增量式更新算法NEWFUP,最后介绍了在某中小型商业企业的事务数据库中该算法的实现。 相似文献
4.
一种基于前缀广义表的关联规则增量式更新算法 总被引:20,自引:1,他引:20
关联规则挖掘是数据挖掘研究的一个重要方面,关联规则的高效维护算法研究是当前研究的热点.传统更新算法与Apriori算法框架一致,要多遍扫描数据库并产生大量的候选项目集.为此,该文对FP-tree进行了改进,引入了前缀广义表——PG-List,并提出了基于PG-List的关联规则挖掘(MARBPGL)与增量式更新算法(IUABPGL).算法MARBPGL仅须扫描数据库两遍,算法IUABPGL在最坏的情况下仅须扫描原数据库一遍,扫描新增数据库两遍,且两个算法均无须生成候选项目集,避免了产生“知识的组合爆炸”,提高了挖掘和维护的效率.理论分析和实验结果表明该文提出的算法是有效可行的. 相似文献
5.
本文对在事务数据库不变最小支持度发生变化的情况下的关联规则增量式更新算法(IUA)进行了分析,指出了该算法的不足之处,并在它的基础上提出了一种改进的算法,通过对两种算法的比较表明新算法的优越性。 相似文献
6.
发现频繁项目集是关联规则挖掘的关键问题,而发现的过程是高花费的。因此,要求对增量挖掘算法进行深入研究。这使得关联规则的更新成为数据挖掘技术中的一个重要内容。文中就关联规则的增量式更新问题进行了探讨,针对最小支持度发生变化时的增量式更新算法(IUA)的不足,提出了改进算法(AIUA),在保证算法有效的同时提高了效率。 相似文献
7.
8.
一种实用的关联规则增量式更新算法 总被引:2,自引:0,他引:2
关联规则是数据挖掘中的一个重要研究内容。目前已经提出了许多用于高效地发现大规模数据库中的关联规则的算法,而对已发现规则的更新及维护问题的研究却较少。该文提出了一种实用的关联规则增量式更新算法,以处理事务数据库中增加了新的事务数据集后相应的关联规则的更新问题,并对其性能进行了分析。 相似文献
9.
一种高效的关联规则增量式更新算法 总被引:2,自引:0,他引:2
发现频繁项目集是关联规则挖掘的关键问题,而发现的过程是高花费的。因此,要求对增量挖掘算法进行深入研究。这使得关联规则的更新成为数据挖掘技术中的一个重要内容。文中就关联规则的增量式更新问题进行了探讨,针对最小支持度发生变化时的增量式更新算法(IUA)的不足,提出了改进算法(AIUA),在保证算法有效的同时提高了效率。 相似文献
10.
本文就数据库不变,最小支持度发生变化的情况下,关联规则的维护问题进行研究,提出了一种新的增量式更新算法。 相似文献
11.
一种高效的关联规则增量更新算法 总被引:3,自引:0,他引:3
对挖掘关联规则中FUP算法的关键思想以及性能进行了研究,提出了改进的FUP算法SFUP。该算法充分利用原有挖掘结果中候选频繁项集的支持数,能有效减少对数据库的重复扫描次数,并通过实验对这两种算法进行比较,结果充分说明了SFUP算法的效率要明显优于FUP算法。 相似文献
12.
针对频繁项集增量更新的问题,提出算法FIU。该算法将保存了数据库事务的FP-tree存储在磁盘上,当挖掘新支持度阈值的频繁项集时,只需从磁盘上读入FP-tree,再挖掘新支持度阈值下的频繁项集。当新增数据库事务记录后,首先建立新项目表,然后根据新项目表建立新增事务记录的FP-tree,读入存储在磁盘上的FP-tree,抽取出所有的事务记录,再插入到新FP-tree中.从而得到增量更新后的FP-tree。最后在增量更新后的FP-tree上挖掘频繁项集。实验证明,FIU算法执行时间不随数据库大小变化,与其他算法相比有较好的性能。 相似文献
13.
在支持度和事务库发生变化时,如何有效地更新关联规则的问题是目前数据挖掘研究的热点。但当事务库中的属性发生变化时,如何高效地更新关联规则的问题一直都没有引起研究人员的重视。ACA+和ACA-算法对单属性增减后的关联规则进行了研究,在此基础上,提出了解决多属性增减的增量关联规则更新算法MACA+和MACA-。通过建立事务-属性矩阵有效地解决了该问题。 相似文献
14.
15.
关联规则是数据挖掘的重要研究内容之一。针对数据库数据增加的同时最小支持度发生改变的关联规则更新维护问题,提出了一种基于矩阵的增量式关联规则挖掘算法IUBM。该算法采用简单的数组和位运算,在执行关联规则的更新时,既不用多次扫描数据库,也不产生庞大的候选项集。实例表明,该算法的时间复杂度和空间复杂度大大降低。 相似文献
16.
关联规则的挖掘是数据挖掘研究中的一个重要课题,目前已经提出了许多用于发现海量事务库中关联规则的算法以及更新已经发现的关联规则的算法。但是在关联规则的更新算法中,都是基于支持度变化和事务库变化的研究,目前没有人研究当事务库中的属性发生变化时,如何高效地更新关联规则的问题。针对这种情况,提出了三种基于属性变化的增量关联规则挖掘算法ACA+(Attribute Change Algorithm)和ACA-(ACA1-),从而解决了该问题。 相似文献
17.
最大频繁项目集的增量式更新算法 总被引:4,自引:0,他引:4
关联规则挖掘已取得了许多有效的算法,但是当事务数据库发生动态变化情况时,频繁项集的挖掘工作仍然是一个复杂的问题。在数据库动态增加的情况下,给出了一种有效的算法——-NEWIUA,它与其它的增量更新算法相比,不同之处在于:NEWIUA对原数据库及新数据库最多只需遍历一次,减少了I/O次数,同时该算法可以保证每次所得的候选项的数目都是最少的。 相似文献
18.
基于频繁模式树的分布式关联规则挖掘算法 总被引:1,自引:0,他引:1
提出一种基于频繁模式树的分布式关联规则挖掘算法(DMARF).DMARF算法设置了中心结点,利用局部频繁模式树让各计算机结点快速获取局部频繁项集,然后与中心结点交互实现数据汇总,最终获得全局频繁项集.DMARF算法采用顶部和底部策略,能大幅减少候选项集,降低通信量.理论分析和实验结果均表明了DMARF算法是快速而有效的. 相似文献
19.
一种基于Apriori的动态关联规则挖掘方法 总被引:2,自引:0,他引:2
文章介绍了一种动态关联规则的挖掘方法,该方法的核心思想是仅使用更新的事务和前面阶段的挖掘结果,用Apriori类算法作为局部过程来产生频集,并给出了具体的动态挖掘算法。 相似文献
20.
增量更新关联规则挖掘主要解决事务数据库中交易记录不断更新和最小支持度发生变化时关联规则的维护问题。针对目前诸多增量更新关联规则挖掘算法存在效率低、计算成本高、规则难以维护等问题,提出一种基于倒排索引树的增量更新关联挖掘算法。该算法有效地将倒排索引技术与树型结构相结合,使得交易数据库中的数据不断更新和最小支持度随应用环境不同而不断改变时,以实现无需扫描原始交易数据库和不产生候选项集的情况下生成频繁项集。实验结果表明,该算法只需占用较小的存储空间、且检索项集的效率较高,能高效地解决增量更新关联规则难以维护的问题。 相似文献