首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为了研究铝粉/锆粉/高氯酸钾(Al/Zr/KClO4)点火药的低湿热老化机制,将Al/Zr/KClO4点火药在85,71,60℃和50℃下分别进行加速老化,利用热分析技术、X射线光电子能谱(XPS)、扫描电镜-X射线能谱(SEM-EDS)分析了低湿条件下Al/Zr/KClO4点火药热分解性能和表面元素与形貌随着温度和时间的变化。结果表明,在加速老化时,随着老化时间的增加,KClO4晶体表面部分分子降解生成KClO3和KCl,Zr表面在热的作用下进一步氧化生成ZrO2,Al未见明显变化,同时,各组分表面形貌未发生变化。Al/Zr/KClO4点火药热分解活化能和热焓值随着老化时间的增加呈现下降趋势,与未老化的点火药相比,85℃老化160 d活化能降低了29.57 kJ·mol-1,热焓值降低了160 J·g-1。以反应速率、热焓值、各组分表面元素参量拟合获得了点火药老化机理函数,发现反应速率、Z...  相似文献   

2.
为了提升乳化炸药的耐低温性能,向乳化炸药水相中加入不同含量的二甲基亚砜(DMSO)。利用析晶率实验、扫描电镜(SEM)观察和猛度实验,研究冷冻后(-2 0℃)乳化炸药的稳定性及爆轰性能,并结合热重-微商热重(TG-DTG)技术研究乳胶基质的热分解特性。实验结果表明,在-20℃冷冻条件下,与未添加DMSO的乳胶基质相比,加入1.5%(质量分数)的DMSO能使乳胶基质达到最大析晶率时间由24 d推迟到51 d;冷冻12 d后,含DMSO的乳胶基质其乳胶粒子分布更加均匀,DMSO含量为1.5%的乳化炸药较未添加DMSO的乳化炸药猛度增加29.9%;DMSO的加入对于乳胶基质热分解过程没有明显影响,但会降低其表观活化能,当DMSO含量为1.5%时乳胶基质表观活化能降低约18.5%。  相似文献   

3.
董军  欧江阳  朱林  李彬 《含能材料》2016,24(6):555-559
为了解端叠氮聚叠氮缩水甘油醚(GAPA)的热分解动力学和热安全性,采用差示扫描量热法(DSC)、热重法(TG)对GAPA进行了热分解特性研究。根据GAPA在升温速率为2,5,10,20℃·min~(-1)时放热峰温和分解深度,考察了GAPA热分解反应的表观活化能、指前因子和热分解动力学方程,计算出热力学参数和热安全性参数。结果表明,GAPA的热分解反应过程分为两个阶段,表观活化能EK为218.47 kJ·mol~(-1),指前因子A_K为1.06×10~(22)s~(-1),自发火温度T_(bpo)为506.55 K,自加速分解温度T_(SADT)为496.78 K,以及活化自由能(ΔG~≠)、活化焓(ΔH~≠)和活化熵(ΔS~≠)分别为132.76 kJ·mol~(-1)、214.34 kJ·mol~(-1)和164.21 J·mol~(-1)·K~(-1)。  相似文献   

4.
孙笑  王娟  周新利 《含能材料》2014,22(6):774-779
为了解硝仿肼(HNF)的热分解动力学和热安全性,用真空安定性试验(VST)、差示扫描量热法(DSC)和热重法(TG)研究了HNF的热分解特性。根据HNF在升温速率为5,10,15,20℃·min-1时的DSC曲线的峰温和TG曲线的分解深度(α),分别用Kissinger法和Ozawa法计算了HNF热分解反应的表观活化能(Ek和Ea)和指前因子(Ak)、提出了描述HNF放热分解过程的动力学方程。计算了HNF热分解反应的热力学参数(活化自由能ΔG’,活化焓ΔH’和活化熵ΔS’)和HNF的热安全性参数(自发火温度Tbpo和自加速分解温度TSADT)。结果表明,HNF的放气量为0.41 m L·g-1,不超过2 m L·g-1的标准,显示HNF有良好的热安定性。HNF吸热熔融后的放热分解反应过程可分两个阶段。Ek=257.10 k J·mol-1,Ak=1.74×1033s-1,ΔG’=103.37 k J·mol-1、ΔH’=253.82 k J·mol-1,ΔS’=380.78 J·K-1·mol-1,Tbpo=400.28 K和TSADT=395.10 K。放热分解反应的动力学方程可描述为:对α=0.20~0.65的第一阶段dα/dt=kf(α)=Ae-ERT f(α)=5.14×1021×(1-α)[-ln(1-α)]12 exp(-1.81×104/T)对α=0.65~0.80的第二阶段dα/dt=kf(α)=Ae-ERT f(α)=3.30×1014×(1-α)[-ln(1-α)]-1exp(-1.33×104/T)  相似文献   

5.
铝粉形态学特征对Al/KClO4燃烧性能的影响   总被引:1,自引:0,他引:1  
崔庆忠  焦清介  彭晨光 《兵工学报》2011,32(11):1327-1330
铝粉形态学特征是影响含铝点火药燃烧性能的关键因素.采用差示扫描量热法研究了不同形貌和粒度的铝粉在Al/ KClO4点火药体系的热分解行为及燃烧反应机理,得到了体系晶形转化、熔化、界面液相反应、气相氧化4个阶段的热分解反应方程式;从热分解温度、燃烧热、燃烧速度3个方面,分析了铝粉形态学特征对点火药燃烧性能的影响,得到了体...  相似文献   

6.
为探究微米锆粉的热氧化过程,进行锆粉氧化反应动力学分析,通过激光粒度分析、扫描电子显微镜(SEM)和X射线衍射仪(XRD)等方法对所研究锆粉颗粒的粒径分布、微观形貌、元素含量以及物相特征进行了研究。通过热重分析法(TG)和差示扫描量热法(DSC)开展了不同升温速率的氧化过程研究,得到不同升温速率下锆粉氧化的DSC-TG曲线,进一步分析得到锆粉热氧化的动力学参数以及反应模型。结果表明,锆粉样品的粒径主要分布在15~46μm,颗粒形状不规则,且主要包含Zr元素,锆粉颗粒主要物相为金属Zr;锆粉氧化过程可以分为初始氧化,加速氧化、剧烈氧化和反应平衡四个阶段;锆粉的非等温氧化过程符合随机成核和随后生长模型函数,其积分表达式为G (α)=[-ln(1-α)]~(5/2)。因此微米锆粉热氧化反应动力学的活化能E_a为175.83 kJ·mol~(-1),指前因子A=1.91×108s~(-1),反应速率常数k=1.91×10~8exp(-2.1×10~4/T)。  相似文献   

7.
利用微热量热实验研究了黑索今(RDX)的热分解特性及奥克托今(HMX)对其热稳定性的影响,运用AKTS分析软件对热分解曲线进行解耦分峰,得到了不受熔融相变影响的热分解曲线和参数,采用Kissinger、Friedman和Ozawa法计算了其热分解活化能。结果表明:RDX是熔融分解型物质,解耦后的RDX熔融峰温为201.07~208.05℃,分解峰温为207.99~232.76℃,活化能为167.70 kJ·mol~(-1),通过Friedman法和Ozawa法计算的活化能变化趋势相同,并得到AKTS软件验证。不同RDX/HMX比例(9/1,8/2,7/3,6/4,5/5)的样品与单质RDX相比,混合样品中RDX的熔融峰温平均降低了8.63,8.32,9.70,8.57,6.50℃,其分解峰温平均改变了1.14,2.01,2.58,3.53,3.47℃;混合样品中RDX活化能为162.32,151.40,149.78,141.14,132.93 kJ·mol~(-1),表明随着HMX比例的增加,RDX活化能降低。  相似文献   

8.
张军  路桂娥  江劲勇 《含能材料》2008,16(5):525-526
为了探求环境湿度对某新型推进剂热分解动力学的影响规律,利用CaCl2.6H2O,NaHSO4,NaNO2,NH4Cl,KBr,NaBrO3六种饱和盐溶液模拟了不同的环境湿度条件,并用微热量计对该推进剂进行不同升温速率(5,4,3,2℃/h)的等速升温实验,获得了不同湿度条件下的热谱数据。采用Ozawa法和Kissinger法计算了不同相对湿度条件下该型推进剂的表观活化能、指前因子等动力学参数,并得出其反应速率常数随着湿度增大而增大的规律。  相似文献   

9.
王杰群  王鹏程  陆明 《含能材料》2016,24(6):538-543
1,1'-二羟基-5,5'-联四唑类化合物是近年来高能钝感材料研究的热点,为研究这类化合物的热安全性,用差示扫描量热法(DSC)和热重法(TG)在升温速率分别为5,10,15,20 K·min~(-1)的条件下研究了1,1'-二羟基-5,5'-联四唑钻盐(1,1'-BTOCo)、铜盐(1,1'-BTOCu)和铅盐(1,1'-BTOPb)的热分解过程。分别用Kissinger法和Ozawa法计算了三种盐的表观活化能(E_K和E_O)、指前因子(A_k),得到其热分解动力学参数和热分解机理函数。结果表明,1,'-BTOCo的E_K=162.35 kJ·mol~(-1),A_K=1.83×10~(15)s~(-1),T_(SADT)=534.46 K,T_(bpo)=542.22 K;1,1'-BTOCu的E_K=217.95kJ·mol~(-1),A_K=12.58×10~(20)s~(-1),T_(SADT)=527.56 K,T_(bpo)=539.11 K;1,1'-BTOPb的E_K=223.52 kJ·mol~(-1),A_K=4.24×10~(20)s~(-1),T_(SADT)=525.87 K,T_(bpo)=580.00 K。  相似文献   

10.
用热重-微商热重分析(TG-DTG)、热重与傅立叶变换红外联用技术(TG-FITR)、热重与质谱联用(TG-MS)和热裂解快速扫描付里变换红外技术(RCFT-IR)法研究了1-甲基-2,4,5-三硝基咪唑(MTNI)热分解过程和热分解反应动力学,根据实验结果,提出了MTNI的热分解机理:MTNI的放热分解过程分两个阶段,第一阶段是—NO2基发生明显变化,生成NO;第二阶段是芳环断裂分解,释放出H2O、CO、CO2、NO2等气体。  相似文献   

11.
为了研究纳米复合材料与铝粉基烟火药的发光强度,基于NH4Cl O4和KOH的复分解反应制备了高氯酸钾/碳纳米管(KCl O4/CNTs)纳米复合材料。用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)表征了其结构。化学分析测试了纳米复合材料中各组分的含量,测定了KCl O_4/CNTs-Al、KCl O4-CNTs-Al、KCl O_4-Al不同烟火药配方的发光强度。结果表明,KCl O_4能够有效附着在CNTs的表面且包覆完全,制备的KCl O_4/CNTs复合材料的粒径为74.0 nm,用化学分析法测得KCl O_4/CNTs中两种物质的质量比为78∶22。与KCl O_4-CNTs-Al和KCl O4-Al烟火药相比,KCl O_4/CNTs-Al(77/23)烟火药的发光强度分别提高了39.4%和88.2%。这种发光强度的提高是由于KCl O_4的纳米化、CNTs的催化与燃烧,其中KCl O_4的纳米化对这种发光强度的贡献优于CNTs。  相似文献   

12.
为了提高烟火固体激光器泵浦源Zr/KClO4的泵浦效率,在烟火剂Zr/KClO4中引入具有催化性能、高比表面积、强吸附能力、高强度的碳纳米管(CNTs),借助差热分析技术和光电探测技术研究了碳纳米管对泵浦源用烟火剂Zr/KClO4(60/40)的热分解和光辐射性能的影响。结果表明:CNTs的加入对Zr/KClO4的热分解特性和光辐射能均有显著的影响。随着CNTs添加量的增加,烟火剂的燃烧速率和放热量均逐渐增加,药剂的融化吸热峰减弱,甚至趋于消失,药剂的光辐射能量却呈现出先增加后降低的趋势。当CNTs含量为体系总质量的0.50%时,药剂总光辐射能达到了1830 J·g-1,其中分布在钕(Nd):钇铝石榴石(YAG)激光增益介质的三个强吸收带(590±10)nm,(750±10)nm和(808±10)nm内的有效光辐射能分别提高了41%,25%和31%。  相似文献   

13.
CNTs/KClO4复合材料的形貌特征及热行为   总被引:4,自引:4,他引:0  
为有效避免点火药中纳米级氧化剂颗粒的团聚,进一步提高点传火稳定性,通过NH4ClO4溶液和KOH溶液的复分解反应制备了碳纳米管/高氯酸钾(CNTs/KClO4)复合材料。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、差热分析(DSC)和比表面积(SSA)分析研究了CNTs/KClO4复合材料的形貌特征及热行为。结果表明:用这种方法制备的KClO4能有效涂敷在碳纳米管上。与纯CNTs相比,负载KClO4的碳纳米管管径明显增粗,CNTs/KClO4复合材料的比表面积降低了40.719 m2·g-1。与KClO4相比,CNTs/KClO4复合材料的热分解温度前移了75℃,晶型转变峰温前移了5℃。与以KClO4为原料制备的Mo/KClO4点火药相比,以CNTs/KClO4复合材料为原料制备的Mo/KClO4点火药的热导率提高了33.9%。  相似文献   

14.
Zr/KClO4激光点火延迟时间与装药密度的关系   总被引:1,自引:1,他引:0  
严楠  曾雅琴  傅宏 《含能材料》2008,16(5):487-489
采用光纤插入式激光点火器测定了Zr/KClO4点火药的装药密度和压药压力的关系及激光点火延迟时间和装药密度的关系,得出在压药压力5~130 MPa范围,对应的装药密度变化为0.94~1.39 g.cm-3;在密度1.0~1.38 g.cm-3范围,对应的点火延迟时间变化为2.83~0.54 ms。在装药密度≤1.25 g.cm-3时,点火延迟时间随密度变化较快,装药密度≥1.30 g.cm-3时,点火延迟时间随密度增加趋于稳定,最短点火延迟时间约为0.54 ms。在装药密度较低时,如低于1.07 g.cm-3,对应压药压力低于30 MPa,实验数据散布较大。  相似文献   

15.
为了提升高氯酸铵(AP)基固体推进剂的燃烧及点火等性能,采用离子交换法制备了海藻酸锰薄膜,煅烧后得到了纳米Mn_3O_4复合催化剂,研究了其对AP热分解性能的影响。采用扫描电镜、傅里叶红外、X射线光电子能谱仪、X射线衍射仪等对制备的纳米Mn_3O_4复合催化剂形貌和结构进行了表征。结果表明,通过锰离子交换后,海藻酸钠变为海藻酸锰,所形成的薄膜表面光滑致密;400℃煅烧后原位生成的纳米Mn_3O_4颗粒负载在碳化后的海藻酸骨架上,其对AP的催化效果随着纳米Mn_3O_4复合催化剂含量的增加而增强,并且放热速率明显增加;当纳米Mn_3_O4复合催化剂含量为3%时,与纯AP相比,AP的分解温度降低了89.1℃。  相似文献   

16.
为了研究双金属氧化物在固体推进剂中的催化性能,采用溶剂热法及热退火工艺成功制备出在镍泡沫(NF)上生长的蜂窝状ZnCo_2O_4(honeycombs ZnCo_2O_4,ZnCo_2O_4(HCs)),并通过X射线粉末衍射(XRD),X射线光电子能谱仪(XPS),傅里叶红外光谱仪(FT-IR),扫描电子显微镜(SEM)及N2吸附-脱附测试对其物相组成和形貌结构进行了表征分析。采用差示扫描量热法(DSC)研究了制备的ZnCo_2O_4(HCs)对高氯酸铵(AP)和六硝基六氮杂异伍兹烷(CL-20)的催化性能。结果表明,当ZnCo_2O_4(HCs)用量为20%时,ZnCo_2O_4(HCs)/AP和ZnCo_2O_4(HCs)/CL-20最低热分解峰温,分别为575.01,521.55 K。与纯AP和CL-20相比,ZnCo_2O_4(HCs)/AP和ZnCo_2O_4(HCs)/CL-20复合物的放热分解峰温分别提前了101.87,3.73 K,热分析动力学计算表明它们的表观活化能分别降低了17.88,6.23 kJ·mol~(-1)。与文献报道的纳米微晶状(NCs)、纳米线状(NWs)及纳米球状(NSs)ZnCo_2O_4相比,蜂窝状ZnCo_2O_4呈现出良好的催化活性,这可归因于ZnCo_2O_4(HCs)的多孔结构和大比表面积,能够为热分解反应提供丰富的活性位点。  相似文献   

17.
郭子如  王小红 《含能材料》2004,12(6):361-363
用非等温DSC和TC,在2,4,6,8 K·min-1四个不同的线性升温速率下,研究了分析纯硝酸铵(AN)、工业AN以及分析纯AN和NaNO3混合物的热分解动力学。结果表明,在反应深度为0.0-0.4区间内,AN热分解反应受随机成核和随后增长机理控制,机理函数为n=2/3的Avrami-Erofeev方程。含10%NaNO3的分析纯AN在同一反应深度区间内的分解过程归属一维相边界反应,机理函数为n=1/3的收缩球(体积)方程。分析纯AN(工业AN与之相似)以及含10%NaNO3混合物的动力学方程分别为:dα/dT=109.43(1-α)[-ln(1-α)]1/3exp(-1.319×104/T)和dα/dT=109.4(1-α)2/3exp(-1.566×104/T)表明,AN中加入少量NaNO3可以改善AN的热稳定性。  相似文献   

18.
为了提高高氯酸铵(AP)的热分解性能,采用蒸发诱导自组装的方法制备了Cu1/Al2O3单原子催化剂.采用X射线粉末衍射(XRD)、电感耦合等离子发射光谱(ICP-OES)、透射电镜(TEM)、X射线吸收光谱(XAS)和X射线光电子能谱(XPS)对催化剂形貌和结构进行了表征,并利用差示扫描量热法(DSC)和热重分析法(TG)研究了其对AP热分解性能的影响.结果表明,活性金属铜以Cu—O键形式稳定在载体表面,呈现均匀的单原子分散状态,Cu负载量高达8.7%质量分数;当Cu1/Al2O3单原子催化剂用量为质量分数5%时,AP的高温分解峰温为319℃,与纯AP相比提前了85℃,催化效果明显优于前驱体Cu(NO3)2·3H2O以及常见的nano-CuO催化剂,表明Cu1/Al2O3单原子催化剂对AP的热分解具有优异的催化作用.  相似文献   

19.
张坤  冯博  王晓峰  尚宇  席鹏  潘文  冯晓军 《含能材料》2022,30(7):673-680
为详细探究高氯酸铵基分子钙钛矿型含能材料(H2dabco)(NH4)(ClO43(DAP-4),/5,5"-联四唑-1,1"-二氧二羟铵(TKX-50)混合物的热分解特性(其中H2dabco2+为1,4-二氮杂双环[2.2.2]辛烷-1,4-二鎓离子),采用差示扫描量热法-热重/质谱/傅里叶红外光谱联用技术对比分析了DAP-4、DAP-4/TKX-50混合物的热分解特性和气体产物,利用固体原位红外技术对DAP-4、DAP-4/TKX-50混合物凝聚相特征基团随温度的变化进行了研究,最后推测出了DAP-4/TKX-50混合物热分解机理。结果表明,DAP-4与TKX-50混合后,DAP-4对TKX-50的热分解影响较小,TKX-50热分解产生的热量使DAP-4可逆相变吸热峰消失,但几乎不影响其高温下的热分解;DAP-4/TKX-50混合物热质量损失分为2个阶段,第一阶段质量损失为43.4%,第二阶段质量损失为52.4%,分解残渣剩余4.2%;DAP-4热分解产生的气体产物主要有NH3、H2O、HNCO、HCN、CO、HCl和CO2,DAP-4/TKX-50混合物热分解产生的气体产物主要有H2O、NO、N2O、HCl、NH3、N2、HNCO、HCN、CO和CO2。DAP-4/TKX-50混合物的热分解机理为:TKX-50分子内发生氢离子可逆转移,生成羟胺和1,1′-二羟基-5,5′联四唑(BTO);羟胺在高温下再继续分解为小分子气体,BTO分解产生的碎片部分聚合成偶联产物;最后,DAP-4离子键断裂,笼状骨架瞬间坍塌,强还原性和强氧化性气体组分在高温下发生剧烈氧化还原反应,并释放大量热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号