首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physicochemical characteristics of gelatin obtained by different pretreatments of sturgeon (Acipenser baeri) skin with alkaline and/or acidic solutions have been studied. Visual appearance, pH, gel strength, viscosity and amino acid profile of the gelatins were evaluated. Pretreatment with alkaline solutions of Ca(OH)2 and/or acetic acid (HAC) provided gelatin with a favourable colour. Pretreatment with alkali removed noncollagenous proteins effectively, whilst acid induced some loss of collagenous proteins. Gel strength and viscosity of gelatin pretreated with HAC or alkali followed by HAC were as high as gelatin extracted in the presence of protease inhibitors. Amino acid composition had no significant effect on the gelatin characteristics. The total acid concentration for the highest gel strength was inversely proportional to ionisation strength, and the preferred pH for extracting gelatin with the optimum gel strength was approximately 5.0. The results showed that any available protons, regardless of the type or concentration of the acid, inhibit protease activity, which significantly affects the gelatin characteristics.  相似文献   

2.
The effect of wet and dry saltings on the physicochemical changes of tilapia (Oreochromis niloticus) muscle was investigated. Dry salting resulted in the higher rate of salt uptake into tilapia muscle facilitating the faster decrease in Aw (< 0.05). The pH of both dry and wet salted fish muscles tended to decrease throughout the salting time and the lower pH was found in dry salted fish (< 0.05). The increase in the protein content in the salting medium was found during wet salted tilapia production (< 0.05). The TCA-soluble peptide content tended to decrease with increasing the salting time in both salting methods (< 0.05), suggesting a leaching effect of the salting medium or the exudative loss occurred in salted tilapia. Wet salting caused the greater formation of metmyoglobin in tilapia muscle when compared to dry salting at all time points (< 0.05) and the content of metmyoglobin increased as salting time increased in both salting methods (< 0.05). A lowered metmyoglobin with a lowered redness index of dry salted tilapia muscle was found, indicating the continuous oxidation of metmyoglobin to other hypervalent derivatives and hence the discolouration of salted tilapia. Lipid hydrolysis and oxidation of tilapia meat occurred with varying degrees in both salting methods and these changes depended on salting time. Dry salting resulted in a higher oxidation of tilapia muscle lipid as indicated by the higher PV and TBARS throughout the salting period when compared with that of wet salting (< 0.05). In conclusion, the physicochemical changes of tilapia muscle during salting are governed by the salting method and the salting time applied.  相似文献   

3.
Acid-solubilised collagen (ASC) was extracted from the skin of Nile tilapia (Oreochromis niloticus) and characterisation was studied. The results indicated that the yield of ASC was 39.4% on the basis of dry weight. This ASC was rich in glycine (35.6%). The amount of imino acids, proline and hydroxyproline, in ASC was 210 residues per 1000 residues. The ultraviolet (UV) absorption spectrum of ASC showed that the distinct absorption was at 220 nm. ASC showed transition curve at maximum temperature (Tmax) of 32.0 °C in 0.05 M acetic acid, about 12 °C lower than that of calf skin collagen. Maximum solubility (0.75 mg/ml) in 0.5 M acetic acid was observed at pH 3. Solubility reached the minimum at pH 7. A sharp decrease in solubility was observed in 2% (w/v) NaCl or above. Biochemical studies indicated that ASC was composed of the α1α2α3 heterotrimers.  相似文献   

4.
Presence of tocopherol is effective for fish preservation during frozen storage, inhibiting lipid degradation by oxidation. This work evaluated the antioxidant effects of α-tocopherol in diet and postmortem addition on the final quality of hamburgers produced from tilapia fillets kept frozen for zero, 30, 60, and 90 days. Chemical composition varied within the values found for tilapia fish. The increase in α-tocopherol levels reduced the values of thiobarbituric acid reactive substances (TBARS) in the samples at all time intervals. Tocopherol supplementation in diets protected the hamburgers from lipid oxidation more effectively than postmortem addition.  相似文献   

5.
Gelatin was extracted from the skin of farmed giant catfish (Pangasianodon gigas) with a yield of 20.1 g/100 g skin sample on the basis of wet weight. The chemical composition and properties of gelatin were characterised. The gelatin had high protein (89.1 g/100 g) but low fat (0.75 g/100 g) content and contained a high number of imino acids (proline and hydroxyproline) (211 residues per 1000 residues). Giant catfish skin gelatin had a slightly different amino acid composition than calf skin gelatin. The bloom strength of the gelatin gel from giant catfish skin gelatin (153 g) was greater than that of calf skin gelatin (135 g) (P < 0.05). Viscosity, foam capacity and foam stability of gelatin from giant catfish skins were in general greater than those of the gelatin from calf skin tested. SDS-PAGE of giant catfish skin gelatin showed a high band intensity for the major protein components, especially, α-, β- and γ-components and was similar to that of standard calf skin collagen type I.  相似文献   

6.
Changes in lipids, lipoxygenase activity and fishy odour development in the skin of Nile tilapia (Oreochromis niloticus) during iced storage of 18 days were monitored. Triacylglycerol content of skin decreased with coincidental increases in free fatty acid, monoacylglycerol, diacylglycerol and phospholipid contents during storage (< 0.05). During iced storage, peroxide value increased at day 9 and subsequently decreased up to 18 days (< 0.05). Thiobarbituric acid reactive substances values and lipoxygenase activity increased throughout 18 days of iced storage (< 0.05). With increasing storage time, a progressive formation of hydroperoxide was found as evidenced by the increase in amplitude of peak at 3600–3200 cm−1 in Fourier transform infrared spectra. Those changes indicated that lipid oxidation took place during iced storage. The increase in fishy odour of skin was observed as the storage time increased. The development of fishy odour in Nile tilapia skin during iced storage was mostly governed by lipid oxidation via autoxidation or induced by lipoxygenase. Thus, the extended storage time of whole fish resulted in the pronounced changes in lipids and the increased fishy odour in the skin.  相似文献   

7.
Yudi Pranoto  Hyun Jin Park 《LWT》2007,40(5):766-774
Fish gelatin is known to be inferior to mammalian gelatins. Gellan and κ-carrageenan were added to improve properties of the fish gelatin films. Initially, polysaccharides were added to make fish gelatin gels, and tested for the melting point. Mechanical, barrier, color and microstructure properties, as well as Fourier transform infrared (FTIR) and thermal analysis (DSC) of the modified fish gelatin films were evaluated. The addition of gellan and κ-carrageenan increased the melting point of fish gelatin gels, gellan being more effective. Polysaccharides modified fish gelatin films by increasing tensile strength and barrier against water vapor, but made films slightly darker. Scanning electron microscopy (SEM) microstructure analysis revealed that gellan eliminated cracks present in the film matrix resulting in a more uniform structure. FTIR and DSC analyses showed that both polysaccharides effectively interacted with fish gelatin, and moreover, gellan being more effective. Overall, addition of gellan up to 2 g/100 g of gelatin performed better in enhancing fish gelatin films properties.  相似文献   

8.
Protein-based films prepared from red tilapia (Oreochromis niloticus) washed and unwashed mince solubilised at pH 3 and 11 were prepared and characterised. Tensile strength (TS) of films from washed mince was greater than that of films prepared from unwashed mince for both pH used (P < 0.05). TS of films prepared at pH 3 was higher than that of films prepared at pH 11 for both of washed and unwashed mince (P < 0.05). Film from washed mince with pH 3 showed the highest TS, while that from unwashed mince with pH 11 had the lowest TS with the highest elongation at break (EAB) (P < 0.05). Films from washed mince had the lower value of thiobarbituric acid reactive substances (TBARS) than did those from unwashed counterpart, regardless of pH used. Nevertheless, TBARS was much higher in films prepared at acidic pH, compared with those prepared at alkaline pH. During storage of 20 days at room temperature, films became yellowish as evidenced by the increases in b and ΔE-values. Films prepared at pH 11 showed the higher b and ΔE-values than did those prepared at pH 3, especially for those from unwashed mince. However, films prepared from washed mince at pH 3 showed higher b and ΔE-values than did those prepared at pH 11 (P < 0.05). Films generally had the increase in TS but the decreases in water vapour permeability (WVP), film solubility and protein solubility after 20 days of storage (P < 0.05). Therefore, lipid oxidation more likely played a role in yellow discolouration of fish muscle protein film, mainly by providing the carbonyl groups involved in Maillard reaction, while pH regulated the rate of reaction.  相似文献   

9.
Lipid oxidation and fishy odour development in protein hydrolysate from fresh and ice-stored Nile tilapia (Oreochromis niloticus) were investigated. During iced storage of 18 days, heme iron content decreased with a concomitant increase in non-heme iron content (P < 0.05). Peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) values increased. Phospholipid content decreased with a corresponding increase in free fatty acid content. The results suggested that lipid hydrolysis and oxidation took place during storage. When protein hydrolysates were produced from fresh and 18 days ice-stored Nile tilapia muscle, higher lipid oxidation and fishy odour/flavour along with higher amount volatile compounds were obtained in hydrolysate for unfresh sample (P < 0.05). However, the addition of mixed antioxidants during hydrolysis process markedly lowered lipid oxidation, b, ΔC, ΔE values, fishy odour/flavour as well as the formation of volatile compounds in the resulting hydrolysates prepared from both fresh and unfresh samples. Therefore, hydrolysate from Nile tilapia muscle with reduced fishy odour and lighter colour could be prepared by using fresh fish and incorporation of mixed antioxidants during hydrolysis.  相似文献   

10.
Giant squid (Dosidicus gigas) inner and outer tunics were subjected to hydrolysis with pepsin prior to gelatin extraction (G1 gelatin) by a mild-acid procedure. Furthermore, a second gelatin extraction (G2 gelatin) was done using the collagenous residues that remained from the first extraction. Pepsin allows the collagen solubilisation and the extraction yield to increase by yielding extracts high in α-chains. G1 exhibited good gel forming ability but G2 showed poor viscoelastic behaviour and low gel strength, in agreement with the results for the molecular weight distribution, which showed a considerably higher content of low molecular weight components. In spite of these differences, both G1 and G2 showed good filmogenic ability and similar properties were found including the absence of colour, opacity, low water vapour permeability and high puncture deformation. Nevertheless, films made from G1 had a higher puncture force than films made from G2 as a result of the different molecular weight distribution.  相似文献   

11.
ABSTRACT:  Farm-raised catfish are important to the economy of the southeastern states in the United States, and catfish processing produces about 55% of by-products for inexpensive sale. Therefore, the utilization of catfish by-products is of great interest to the catfish industry. The objectives of this research were to determine the optimum pretreatment method to extract catfish gelatin for edible film application, and to characterize physical, mechanical, and barrier properties of edible films fabricated with catfish skin gelatin. Catfish skins obtained from a local plant were treated with 6 selected pretreatment methods. The main extraction was performed with deionized water at 50 °C after pretreatment. The gelatin yield was calculated and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to characterize molecular weight (MW) profile. Color, tensile strength (TS), elongation, and water barrier property were determined to characterize the fabricated catfish gelatin films. From the results of gelatin yield, color, SDS-PAGE, as well as mechanical and barrier properties of the film, the pretreatment method with 0.25 M NaOH and 0.09 M acetic acid, followed by extraction at 50 °C for 3 h, was determined as the optimum extraction method. The catfish gelatin exhibited higher MW fractions than commercial mammalian gelatin. The catfish gelatin extracts possessed film-forming properties determined by TS, elongation, and water vapor permeability (WVP) comparable to those of commercial mammalian gelatin. The selected formula for catfish gelatin film was determined as 1% gelatin and 20% glycerol, resulting in greatest TS and lowest WVP.  相似文献   

12.
In this work Solanum lycocarpum fruits were used as a source of pectin. The parameters of pectin extraction were examined using a 23 factorial design, with temperature, pH and extraction time as independent variables. The extracted S. lycocarpum pectin and dried pulp were analyzed for the presence of antinutritional compounds, such as amylase and trypsin inhibitors, hemagglutinin, tannins, saponins, alkaloids and phytate. Pectin was characterized by measuring its methoxylation degree, intrinsic viscosity and molecular weight. The best pectin extraction conditions yielded as much as 33.6% (dry matter). The S. lycocarpum pectin was determined to be highly methoxylated (77.15%), and it showed an intrinsic viscosity 4.6% lower than that of citrus pectin, probably due to its lower molecular weight (177.76 kDa versus 224.48 kDa of that of citrus pectin). Although there were tannins and phytate in the dried pulp, the pectin fraction was free of these compounds.  相似文献   

13.
Sutee Wangtueai 《LWT》2009,42(4):825-18854
Response surface methodology (RSM) with a 4-factor, 5-level central composite design (CCD) was conducted to ascertain the optimum gelatin extraction conditions from lizardfish scales. The effects of concentration of NaOH (%, X1), treatment time (h, X2), extraction temperature (°C, X3) and extraction time (h, X4) were determined. The responses included extraction yield (%), gel strength (g) at 9-10 °C and viscosity (cP) at 25 °C. The results showed the optimum conditions for the highest values of the three responses when a concentration of NaOH at 0.51%, a treatment time at 3.10 h, an extraction temperature at 78.5 °C and an extraction time at 3.02 h. The predicted responses were 10.7% extraction yield, 240 g gel strength and 5.61 cP viscosity. The experimental values were 10.6 ± 0.82% extraction yield, 252 ± 1.21 g gel strength and 7.50 ± 0.28 cP viscosity. The physicochemical properties of the lizardfish scales gelatin were characterized and the results indicated high protein and low ash content. Texture profile analysis (TPA) with compression was carried out at 30% deformation. The lizardfish scales gelatin was found to contain 20.4% imino acids (proline and hydroxyproline). Furthermore, slightly loose strands of the gel microstructure were observed using scanning electron microscopy (SEM).  相似文献   

14.
This study was conducted to evaluate the influence of thermal treatment (74, 82, and 90 °C), glycerol (30%, 35%, and 40%, w/w) and protein concentrations (3.0%, 3.5%, and 4.0% w/w) of film-forming solution on the properties of Argentine anchovy (Engraulis anchoita) protein isolate (API) films produced by casting. The API presented 88.8% of proteins, 5.5% moisture, 1.3% lipids, 1.0% ash and 53.3% of polar amino acids. The DSC of protein isolate was observed at maximum temperature of 62.2 °C and ΔH 6.4 J/g. The thickness, water vapor permeability, color difference and opacity of the films were not affected by the experimental variables studied (p > 0.05). The lowest solubility, elongation, and highest tensile strength of the films occurred at low temperature, low protein and glycerol concentrations (p < 0.05). Micrographs obtained by scanning electron microscopy of the films showed homogeneous surfaces at low temperature.  相似文献   

15.
16.
Acid soluble collagen (ASC) and pepsin soluble collagen (PSC) from the skin of striped catfish (Pangasianodon hypophthalmus) were isolated and characterised. The yields of ASC and PSC were 5.1% and 7.7%, based on the wet weight of skin, respectively, with the accumulated yield of 12.8%. Both ASC and PSC comprising two different α-chains (α1 and α2) were characterised as type I and contained imino acid of 206 and 211 imino acid residues/1000 residues, respectively. Peptide maps of ASC and PSC hydrolysed by either lysyl endopeptidase or V8 protease were slightly different and totally differed from those of type I calf skin collagen, suggesting some differences in amino acid sequences and collagen structure. Fourier transform infrared (FTIR) spectra of both ASC and PSC were almost similar and pepsin hydrolysis had no marked effect on the triple-helical structure of collagen. Both ASC and PSC had the highest solubility at acidic pH. A loss in solubility was observed at a pH greater than 4 or when NaCl concentration was higher than 2% (w/v). Tmax of ASC and PSC were 39.3 and 39.6 °C, respectively, and shifted to a lower temperature when rehydrated with 0.05 M acetic acid. Zeta potential studies indicated that ASC and PSC exhibited a net zero charge at pH 4.72 and 5.43, respectively. Thus, ASC and PSC were slightly different in terms of composition and structure, leading to somewhat different properties.  相似文献   

17.
Mathematical models for predicting the plenum chamber temperatures developed by a solar tunnel dryer and the drying of Tilapia fish (Oreochromis niloticus) in the solar tunnel dryer was developed, and simulated in Visual Basic 6 (Microsoft Visual Basic 6.0™). Based on Student’s t-test, the simulated and actual data for both plenum chamber temperature and moisture ratio did not differ significant at 5% level of significance. In addition, the simulated and actual moisture ratios showed similar trends, and reduced exponentially with drying time. Further, the performances of models at 10% residual error interval were 83% and 81% for plenum chamber temperature and moisture ratio, respectively. Finally, strong linear correlations existed between simulated and actual data for plenum chamber temperature (R2 = 0.961), and for moisture ratio (R2 = 0.995). Therefore, the model can be used to predict the drying of Tilapia fish in a solar tunnel dryer.  相似文献   

18.
以罗非鱼皮为原料提取罗非鱼皮明胶,选用风味蛋白酶和胰蛋白酶制备罗非鱼皮明胶酶解物,采用ABTS自由基、DPPH自由基、羟基自由基及亚油酸过氧化体系,初步评价罗非鱼皮明胶酶解物的抗氧化活性,再通过模拟体外胃肠道消化实验,结合分子质量分布测定,进一步考察罗非鱼皮明胶酶解物的抗氧化活性。结果显示,在酶解过程中,风味蛋白酶及胰蛋白酶酶解的水解度逐渐升高,在3 h时达到最高,分别达到5.8%和25.36%。在酶解60 min时其TCA可溶性肽得率最高,风味蛋白酶、胰蛋白酶酶解物分别达56.82%和54.44%。通过比较半抑制浓度(IC50),确定了酶解60 min时风味蛋白酶酶解物的清除DPPH自由基及抑制亚油酸过氧化能力较胰蛋白酶酶解物强。模拟体外胃肠道消化后,酶解物羟基自由基清除活性均显著提高(p<0.05),亚油酸脂质过氧化活性明显降低,消化前后样品分子量分布范围均主要集中于30005000 Da,消化后风味蛋白酶及胰蛋白酶酶解物30005000 Da组分的含量分别提高了45%及13%。以上研究结果表明,罗非鱼皮明胶酶解后制备的明胶水解物具有一定的抗氧化能力,具有潜在的开发价值。   相似文献   

19.
Gelatin film from blue shark (Prionace glauca) skin was investigated in order to utilize what is one of the most serious marine wastes in Japan. Film properties from shark skin such as tensile strength (TS), elongation at break (EAB) were evaluated. The TS of gelatin film from shark skin was affected by the protein concentration (1, 2 and 3%) of the film-forming solution (FFS). TS of the film from a 2% protein FFS was the highest. EAB and water vapor permeability (WVP) increased with increasing FFS protein concentration. WVP of shark skin gelatin was evidently low as compared to gelatin films from other fish. An increase in the FFS protein concentration decreased transparency at almost all wavelengths. Furthermore, opacity at 280 nm was characteristically high as compared to films from bony fish skin. The addition of glycerol improved flexibility and enhanced the UV barrier property at 280 nm. However, transparency at the visible range and WVP increased with increasing glycerol content.From the above, it was suggested that shark skin gelatin film technology can be applied to pharmaceutical products or rich-fat food due to its excellent water and UV barrier properties.  相似文献   

20.
Trypsin from intestinal extracts of Nile tilapia (Oreochromis niloticus L.) was characterised. Three-step purification – by ammonium sulphate precipitation, Sephadex G-100, and Q Sepharose – was applied to isolate trypsin, and resulted in 3.77% recovery with a 5.34-fold increase in specific activity. At least 6 isoforms of trypsin were found in different ages. Only one major trypsin isozyme was isolated with high purity, as assessed by SDS-PAGE and native-PAGE zymogram, appearing as a single band of approximately 22.39 kDa protein. The purified trypsin was stable, with activity over a wide pH range of 6.0–11.0 and an optimal temperature of approximately 55–60 °C. The relative activity of the purified enzyme was dramatically increased in the presence of commercially used detergents, alkylbenzene sulphonate or alcohol ethoxylate, at 1% (v/v). The observed Michaelis–Menten constant (Km) and catalytic constant (Kcat) of the purified trypsin for BAPNA were 0.16 mM and 23.8 s−1, respectively. The catalytic efficiency (Kcat/Km) was 238 s−1 mM−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号