首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Curcumin, a natural polyphenolic food colourant, suffers a low bioavailability because of its low solubility and instability in aqueous solutions. Our study demonstrates that the food derived soy protein isolate (SPI) can form a complex with the curcumin. Fluorescence spectroscopy of the SPI–curcumin complex revealed that the complex is formed through hydrophobic interactions. Moreover, curcumin molecules quench the intrinsic fluorescence of SPI upon binding. Upon complexation, curcumin showed increased water solubility. Stability studies by UV spectroscopy showed that >80% of the curcumin was stable in the SPI–curcumin complex when dissolved in water, simulated gastric and intestinal fluids for 12 h, which would provide sufficient time for intestinal absorption. SPI–curcumin complex exhibits enhanced antioxidant activity and is capable of forming foam and emulsion, indicating its possible utilisation in food product formulation. This study suggests that SPI, being an edible protein, could be used as a material to encapsulate water-insoluble bioactive compounds in functional foods.  相似文献   

2.
The conformation, denaturation and aggregation behavior of proteins are important factors which dictate their ingredient functions and applications in formulated food products. The effect of variation in pre-treatment temperature (70–90 °C × 30 s), pH (6.4–7.5) and calcium supplementation (450 and 850 mg/L) on heat coagulation time (HCT at 140 °C) of model emulsions (3.6% (w/v) protein) stabilized with soy protein isolate (SPI) and soy protein hydrolysate (SPH) ingredients was determined. Generally, HCT of emulsions was not significantly affected by alteration of constituent pre-heating temperatures. Model emulsions displayed higher HCTs with increasing pH and lower levels of intrinsic ash content. At both supplementation levels, calcium addition led to decreased HCTs. Supplementation with chloride salts caused a greater decrease in HCT compared to supplementation with citrate salts. Furthermore, soy protein hydrolysis was associated with lower emulsion thermal stability. Results demonstrate that modification of ingredient and manufacturing parameters may be a useful approach for enhancing thermal stability properties of soy protein stabilized emulsions.  相似文献   

3.
The effect of chitosan (CHI) on the stability of monodisperse modified lecithin (ML) stabilized soybean oil-in-water (O/W) emulsion was investigated. Monodisperse emulsion droplets with particle size of 24.4 ± 0.7 μm and coefficient of variation below 12% were prepared by microchannel (MC) emulsification using a hydrophilic asymmetric straight-through MC silicon 24 × 24 mm microchip consisting of 23,348 microchannels. The stability of the ML stabilized monodisperse emulsion droplets was investigated as a function of CHI addition at various concentration, pH, ionic strength, thermal treatment and freezing-thawing treatment by means of particle size and ζ-potential measurements as well as microscopic observation. The monodisperse O/W emulsions were diluted with CHI solution at various concentrations to a final droplet concentration of 1 wt% soybean oil, 0.25 wt% ML and 0–0.5 wt% CHI at pH 3. Pronounced droplet aggregation was observed when CHI was present at a concentration range of between 0.01 and 0.04 wt%. Above this concentration range, flocculations were less extensive, indicating some restabilization. ML stabilized emulsions were stable at a wide range of NaCl concentrations (0–1000 mM) and pH (3–8). On the contrary, in the presence of CHI, aggregation of the emulsion droplets was observed when NaCl concentration was above 200 mM and when the pH started to approach the pKa of CHI (i.e. ∼6.2–7.0). Emulsions containing CHI were found to have better stability at high temperature (>70 °C) in comparison to the emulsion stabilized only by ML. With sucrose/sorbitol as cryoprotectant aids, emulsions with the addition of CHI were found to be more resistant to droplet coalescence as compared to those without CHI after freezing at −20 °C for 22 h and thawing at 30 °C for 2 h. The use of CHI may potentially destabilize ML-stabilized O/W emulsions but its stability can be enhanced by selectively choosing the appropriate CHI concentrations and conditions of preparation.  相似文献   

4.
Relatively concentrated (40 wt%) O/W emulsions formulated with high-oleic sunflower oil as disperse phase, potato protein isolate as emulsifier and chitosan as stabiliser were prepared by rotor–stator/high-pressure valve/rotor–stator homogenization. The influence of chitosan concentration on the physical stability of emulsions was studied in (0.25–1) wt% range by visual inspection, rheological and microstructural techniques. Steady shear flow curves were sensitive to the occurrence of creaming upon the rise of zero-shear viscosity values. The effect of increasing concentration of chitosan on the zero-shear viscosity turned out to be dependent on emulsion ageing and always resulted in a stepwise increase of the critical shear rate for the onset of shear thinning flow. The critical oscillatory shear stress for the onset of non-linear viscoelastic behaviour was more sensitive than the critical shear rate to detect creaming in emulsions. Mechanical spectra are definitely demonstrated to be the most powerful tool to detect not only creaming but also oil droplet flocculation on account of changes in the plateau relaxation zone. CSLM micrographs supported the interpretation of dynamic viscoelastic results, especially when flocculation as well as coalescence took place. Cryo-SEM micrographs evidenced the formation of increasingly denser protein–polysaccharide networks with chitosan concentration and the fact that the latter governs the microstructure of the emulsion when reaches 1 wt% concentration promoting enhanced physical stability.  相似文献   

5.
The storage modulus (G′) and fracture properties of the non-treated and NEM-treated emulsion gels were investigated in the absence and presence of unadsorbed soy protein aggregates (USPA). In the absence of USPA, a decrease in the G′ of emulsion gels was observed after NEM treatment. However, in the presence of USPA, the addition of NEM only slightly decreased the G′ (p < 0.05). For both non-treated and NEM-treated emulsions, a ∼63-folds higher G′ value was obtained after the USPA addition. These results revealed the presence of sulphydryl group – disulfide bond interchange reactions at ambient temperature and under acidic conditions. In the absence of USPA, the sulphydryl group – disulfide bond interchange reactions was the main interactions responsible for the higher G′ values of non-treated emulsion gels, but for the emulsions with USPA presented, the large quantity of non-covalent interactions (e.g. hydrophobic group & hydrogen bonds) is the main interactions responsible for the aggregation and gelation of emulsion droplets. In the presence of USPA, the sulphydryl group – disulfide bond interchange reactions formed in the non-treated emulsion gels did not increase the final G′ but increased the stability of network. A power law relation was observed between the USPA concentration and the final G′, as well as between the oil volume fraction and the fracture stress/strain.  相似文献   

6.
研究大豆可溶性多糖(soybean soluble polysaccharides,SSPS)及不同浓度的Fe2+对大豆分离蛋白(soy isolated protein,SPI)稳定的O/W乳状液的物理稳定性和流变特性的影响。通过测定14 d内添加SSPS和不同浓度的Fe2+的乳状液的稳定动力学指数(turbiscan stability index,TSI)、稳态流变、粒径大小及分布和Zeta-电位,确定其物理稳定性。结果表明,与SPI乳状液相比,添加SSPS后,SSPS-SPI乳状液的TSI显著降低(p<0.05),液滴的表面积平均直径(d3,2)和体积平均直径(d4,3)增加,粘度系数增加,Zeta-电位绝对值降低,表明SSPS增加了SPI乳状液的粘度,提高了乳状液的物理稳定性;添加0.1 mmol/L Fe2+后,乳状液的TSI最低,液滴的d3,2和d4,3分别为0.686、2.136 μm,为最小粒径,粘度增加,稳定性较好;随着Fe2+浓度的增加,乳状液的TSI显著增加(p<0.05),粒径增大,分布范围变宽,表明0.2~0.5 mmol/L的Fe2+降低了乳状液的物理稳定性。总之,SSPS和0.1 mmol/L Fe2+的添加,提高了SPI稳定的O/W乳状液的物理稳定性。  相似文献   

7.
The influence of pH and two post-emulsification treatments (pH modification and thermal cycles) over linear dynamic viscoelasticity and droplet size distribution, DSD, of O/W emulsions (75% oil) stabilized either by soy protein isolate, SPI, or wheat gluten, WG were studied in the present work. Rheological properties and droplet size of fresh emulsions showed an important dependence on pH as a consequence of the role of electrostatic interactions, not being possible to obtain a stable emulsion for pH values close to the protein isoelectric point, pI, (4–5 for SPI and 6 for WG). In order to overcome this inconvenient, an alternative emulsification procedure, basically consisting in a modification of pH after emulsification (indirect emulsification), was successfully developed. Emulsions obtained after this post-emulsification treatment, showed higher elastic (G′) and loss (G″) moduli and also larger oil droplets than fresh emulsions prepared at the same pH. Moreover, the application of upward/downward temperature cycles from 20 to 70 °C to emulsions directly prepared at a pH yielded to significantly higher values of the rheological functions when compared to those found for fresh emulsions. Accordingly, both post-emulsification treatments lead to apparent enhancements in emulsion rheology and microstructure, which is indicative of a good potential to improve long-term emulsion stability.  相似文献   

8.
The objective of this study was to characterize the effects of pH, protein concentration and calcium supplementation on thermal stability, at 140 °C, of soy protein isolate (SPI) and soy protein hydrolysate (SPH) ingredients. Increasing pH between 6.4 and 7.5 led to significantly (p < 0.05) higher mean heat coagulation times (HCTs) at 140 °C, for all soy protein ingredients at 1.8, and 3.6% (w/v) protein. Increasing protein concentration from 1.8 to 7.2% (w/v) led to shorter HCTs for protein dispersions. Calcium supplementation up to 850 mg/L, except in the case of supplementation of SPI 1 with calcium citrate (CaCit), decreased HCT for soy protein ingredient dispersions, at pH 6.4 – 7.5. No significant differences (p < 0.05) were found in mean HCT for dispersions supplemented with calcium chloride (CaCl2) and those supplemented with CaCit at 450, 650 and 850 mg/L Ca2+, in the pH range 6.4–7.5.  相似文献   

9.
Glycerol-plasticized soy protein isolate (SPI) based films were prepared by compression with the aim to obtain environmentally friendly materials for packaging applications. Previously to the hot-pressed step, the protein was dispersed in water, the pH was fixed to values higher, lower and at the isoelectric point of SPI (pH = 4.6), and the dispersion was freeze-dried. The effect of pH on physico-chemical properties has been explained using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermo-gravimetric analysis (TGA). The changes observed by FTIR in the intensity of the bands corresponding to the amide group showed that pH affected protein–glycerol interactions. Apart from pH effect, heat and pressure also affected the grade of denaturation of SPI shown by the disappearance of the DSC peak corresponding to 7S globulin. Mechanical properties were also evaluated and related to pH and storage time. Both tensile strength and elongation at break are higher at basic pHs, when the unfolding of protein seems to be optimum in order to interact with the plasticizer. Mechanical properties remained invariable after having been stored under specific conditions for two months. Preparation of SPI-based biofilms processed at different pHs by compression is an innovative study in this field, in which the most employed technique to prepare films has been casting.  相似文献   

10.
Based on layer-by-layer electrostatic deposition, orange oil bilayer emulsions stabilized with lactoferrin (LF)–soybean soluble polysaccharides (SSPS) and lactoferrin (LF)–beet pectin (BP) were prepared. The effect of environmental stresses (ionic strength, pH, freeze–thaw and light) on the physicochemical stability of primary and secondary emulsions was investigated. In the absence of anionic polysaccharides, orange oil emulsion was highly unstable and aggregated at pH 7–9 and NaCl of 0.1–0.5 M. The droplets in LF–SSPS coated emulsion were stable against aggregation at pH range of 3–10 and NaCl concentration less than 0.3 M, while the droplets in LF–BP coated emulsion were stable against aggregation at pH 4–9 and NaCl concentrations of 0–0.5 M. All the primary and secondary emulsions showed the instability after the freeze–thaw treatment and the stability could be improved in the presence of maltodextrin. During the light exposure (0.35 W/m2, 45 °C) for 8 h, the bilayer emulsions could protect key volatile compounds (decanal, octanal and geranial) from the oxidation compared with the primary emulsions. These results suggested that the layer-by-layer electrostatic deposition could improve the stability of LF-coated emulsion to environmental stresses.  相似文献   

11.
The incorporation of relevant amounts of non-adsorbing hydrocolloids to oil-in-water (O/W) emulsions is a suitable alternative to reduce creaming. The effect of incorporating xanthan gum (XG) or guar gum (GG) in soy soluble polysaccharide (SSPS) stabilized oil-in-water (O/W) emulsions was studied. The emulsions contained 6 wt.% of SSPS, 20 wt.% Perilla seed oil (PSO), an omega-3 vegetable oil, and variable amounts of XG or GG ranging from 0.03 to 0.3 wt.%. The presence of minute amounts of XG or GG in fresh emulsions significantly decreased the emulsion droplet size (EDS) although such low concentrations did not provide enough continuous phase viscosity to arrest creaming. Emulsion microstructure indicated the presence of flocculation even at high concentrations of XG or GG caused by a depletion mechanism. All emulsions with XG or GG exhibited pseudoplastic behavior while the control emulsions showed an almost Newtonian behavior. Emulsion droplet polydispersion generally decreased with increase in the continuous phase viscosity indicating the importance of continuous phase viscosity in the dissipation of shear energy throughout the emulsion during homogenization. The characteristics of the emulsions were closely related to the rheological changes of the continuous phase.  相似文献   

12.
Carboxymethylcellulose (CMC) was used as coagulation aid to precipitate the whey proteins from defatted milk serum and the ability of the resulting whey protein concentrate (WPC, protein content: 63.69%) to aid in the physicochemical stabilization of oil-in-water emulsions, during ageing or following the application of heat or freeze–thaw treatment, was investigated, along with the stability of emulsion systems prepared with a commercial whey protein isolate. The stability of WPC emulsions against droplet flocculation and creaming, and to a lesser extent against droplet coalescence, depended on the presence of the CMC molecules in the emulsion continuous phase and the extent of adsorbed protein–polysaccharide interactions as affected by the emulsion pH. Studies on whey protein–CMC interaction were conducted, both in biopolymer mixture solutions and emulsion systems, by applying zeta potential measurement and viscometry techniques. These results were combined with data on protein surface hydrophobicity and on methylene blue-binding ability of CMC molecules and indicated that whey protein–CMC interaction may take place in solution, both at neutral as well as at acidic environments, leading, depending on pH, to the formation of soluble or non-soluble amphiphilic conjugates. In emulsion systems, however, conjugate formation is observed only at relatively acidic pH environments, probably because at a neutral or at a slightly acidic pH whey protein adsorption to the emulsion droplet surface and molecular unfolding does not favour protein–polysaccharide interaction.  相似文献   

13.
The effects of low-frequency (20 kHz) ultrasonication at varying power (200, 400 or 600 W) and time (15 or 30 min) on functional and structural properties of reconstituted soy protein isolate (SPI) dispersions were examined. Ultrasonic treatments reduced both the storage modulus and loss modulus of SPI dispersions and formed more viscous SPI dispersions (fluid character). Moreover, ultrasound treatment significantly decreased the consistency coefficients and increased the flow behaviour index of SPI dispersions. Scanning electron microscopy of lyophilized ultrasonicated SPI showed different microstructure with larger aggregates compared to non-treated SPI. No significant change was observed in the protein electrophoretic patterns by SDS-PAGE. However, free sulfhydryl content, surface hydrophobicity and protein solubility of SPI dispersions were all increased with ultrasonic treatment. Differences in solubility profiles in the presence versus absence of denaturing (0.5% sodium dodecyl sulphate and 6 M urea) and reducing (mercaptoethanol) agents suggested a decrease in non-covalent interactions of SPI in dispersion after ultrasonic treatment. Secondary structure analysis by circular dichroism indicated lower α-helix and random coil in SPI treated at lower power, in contrast to higher α-helix and lower β-sheet in SPI treated with higher power (600 W). In conclusion, under the conditions investigated in this study, ultrasonic treatment resulted in partial unfolding and reduction of intermolecular interactions as demonstrated by increases in free sulfhydryl groups and surface hydrophobicity, leading to improved solubility and fluid character of SPI dispersions, while larger aggregates of ultrasonic-treated SPI in the dry state were formed after lyophilization.  相似文献   

14.
Soybean soluble polysaccharide (SSPS), extracted from the by-product obtained during isolation of soybean protein, is an anionic polysaccharide that stabilizes milk proteins under acidic conditions. We developed a high-molecular-mass complex of SSPS cross-linked via phosphate (SSPS-HC; absolute molecular weight = 2850 kg/mol, radius of gyration = 106 nm), and found that it has different protein stabilization properties when compared with the original SSPS (absolute molecular weight = 550 kg/mol, radius of gyration = 36 nm). The objective of this work was not only to study the rheological properties of SSPS-HC, but also clarify its protein-stabilizing properties in comparison with SSPS; if molecular mass or negative charge affected protein dispersion. Irrespective of high-molecular-mass, SSPS-HC possessed similar rheological properties to SSPS such as low viscosity in aqueous solution. The absolute negative charges of SSPS-HC measured by a zeta potential analyzer at pH range of 2.0–7.0 were higher than those of SSPS. Acidified milk drinks prepared with 8.4% non-fat milk solids and 0.4% SSPS-HC or SSPS showed low viscosity and small protein particle size, and did not aggregate for 14 days. The thickness of the hydrated layer, which was formed on the surface of protein particles by SSPS molecules measured after hemicellulase treatment with DLS (dynamic light scattering), was estimated to be about 89 nm for SSPS-HC and 33 nm for SSPS. These numerical values were in good relation to the molecular diameter of SSPS-HC and SSPS in aqueous solution measured by DLS and AFM image, and suggested that protein particles were dispersed and the hydrated monolayer made on the surface of protein particles by SSPS-HC or SSPS molecules prevented aggregation. However, stabilizing pH ranges were different with stability of SSPS-HC at pH range of 4.0–4.8 and stability for SSPS at pH range of 3.6–4.2. In addition to the difference in the molecular mass and absolute negative charge, the phosphate groups of SSPS-HC were possibly influenced on the protein-dispersing property approximately at isoelectric point of milk protein; SSPS-HC prevent aggregation of casein by accelerating solubility of calcium phosphate under acidic conditions as is already reported in the starches phosphorylated.  相似文献   

15.
Emulsion instabilities such as depletion flocculation, coalescence, aggregation and heat-induced protein aggregation may be detrimental to the production of sterilised food emulsions. The type and the amount of protein present in the continuous phase and at the oil–water interface are crucial in the design of emulsions with appropriate stability. In this study, four oil-in-water model emulsion systems (pH 6.8–7.0) were formulated, characterised and categorised according to the potential interactions between protein-coated or surfactant-coated emulsion droplets and non-adsorbed proteins present in the continuous phase. The heat stability, the creaming behaviour and the flow behaviour of the model emulsions were influenced by both the emulsifier type and the type of protein in the continuous phase. The results suggest that this stability map approach of predicting droplet–droplet, droplet–protein and protein–protein interactions will be useful for the future design of heat-stable emulsion-based beverages with good creaming stability at high protein concentrations.  相似文献   

16.
Canola protein albumin fraction, globulin fraction, and canola protein isolate (CPI) were compared to commercial soy protein isolate (SPI) in terms of their emulsifying properties at various pH values. The globulin fraction had higher emulsifying capacity (EC), higher emulsifying activity index (EAI), and the droplet size of emulsions it stabilized was consistently smaller irrespective of pH compared to albumin fraction or CPI. In comparison to SPI, globulin fractions also had higher EC at all pH values tested, higher EAI at acidic pH, and smaller or comparable average emulsion droplet size at both pH 4 and 7. The stability of canola protein based emulsions were comparable to those of SPI based emulsions at most pH values (except the emulsion stabilized by the CPI at pH 4), with no significant (p > 0.05) changes in droplet size during storage for up to 7 days at room temperature. These emulsions, however, experienced separation into the emulsion and serum phases after 24 h storage at room temperature with the exception of CPI- and SPI-stabilized emulsions at pH 9. This study demonstrates the comparable emulsifying properties (forming or stabilizing) of some canola proteins to commercially available SPI, suggesting the potential use of canola proteins in food applications.  相似文献   

17.
Water-soluble soybean polysaccharide (SSPS) is a naturally occurring emulsifier. SSPS was used as the sole emulsifier to stabilize an oil-in-water (O/W) emulsion. The effects were investigated of different SSPS concentrations (3–20% (w/w)) on the lipid digestibility, rheological properties and stability of O/W emulsions during in vitro digestion model. The droplet size of the emulsions tended to increase during the oral phase because the emulsions were unstable and droplets coalesced, except with a SSPS concentration of 20% (w/w). The presence of SSPS markedly reduced the free fatty acid (FFA) content after its stabilized O/W emulsion passed through in vitro gastrointestinal digestion. The amount of FFA significantly decreased as the concentration of SSPS increased due to SSPS stabilization film on oil droplet surface and high viscous system. SSPS may be an attractive alternative ingredient to control the lipid digestibility of emulsions for various food products.  相似文献   

18.
Lipid and protein structural characteristics of frankfurter formulated with olive oil-in-water emulsion stabilized with soy protein isolate (SPI) as pork backfat replacer were investigated using Fourier transform infrared spectroscopy (FT-IR). Proximate composition and textural properties were also evaluated. Different frankfurters were reformulated: F/PF with pork backfat, F/SPI with oil-in-water emulsion stabilized with SPI and F/SPI + SC + MTG with emulsion stabilized with a combination of SPI, sodium caseinate (SC) and microbial transglutaminase (MTG). Replacement of pork backfat with these emulsions produced an increase (P < 0.05) of hardness, springiness, cohesiveness and chewiness but a reduction (P < 0.05) of adhesiveness. F/SPI and F/SPI + SC + MTG frankfurters showed the lowest (P < 0.05) half-bandwidth in the 2922 cm−1 band, which could be related to lipid chains were more ordered than in F/PF. Modifications in the amide I band profile revealed a higher concentration of aggregated intermolecular β-sheets in F/SPI + SC + MTG samples. Lipid and protein structural characteristics could be associated with specific textural properties of healthier frankfurters.  相似文献   

19.
基于大豆多糖的复合乳液储藏稳定性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
乳液是脂溶性生物活性化合物很好的包埋和输送载体,脂溶活性物质能够很好的包埋在油滴中,增强其在水相中的溶解度和稳定性。基于大豆多糖修饰的蛋白复合乳液具有更小更分散的油滴,在食品工业中应用前景广阔。在高温、高盐及酸性的工艺操作环境中,大豆酸溶蛋白(acid soluble soy protein,ASSP)/大豆多糖(soy soluble polysaccharides,SSPS)复合乳液的货架期是实现其有效利用的关键。本论文通过研究热处理、p H及盐离子等条件对O/W体系ASSP/SSPS复合乳液的影响,考察评价ASSP/SSPS复合乳液的贮藏稳定性。结果表明,热处理能够有效增强ASSP/SSPS乳液长期稳定性,受p H变化影响较小。当在p H值为3.0~4.0的范围贮藏时,ASSP/SSPS乳液的稳定性能最优越,基本不受盐离子的影响,并且储存60 d后乳液粒径基本不变。ASSP/SSPS复合乳液的透射电镜和扫描电镜研究可以看出,贮藏60 d后,因ASSP/SSPS的复合界面行为增强,乳液微滴表面形成了更稳定不可逆的ASSP/SSPS复合膜,乳液微滴分布均匀,粒径大小没有明显改变,粒径在268.92~315.26之间。文章通过对ASSP/SSPS复合乳液储存稳定性的系统分析,为复合乳液的工业化生产提供理论指导。  相似文献   

20.
The effect of Ultra-High Pressure Homogenization (UHPH, 100–300 MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15 MPa). CH emulsions were prepared with non-heated and heated (95 °C for 15 min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200 MPa with 20% of oil were the most stable due to low particle size values (d3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号