首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以肠膜明串珠菌(Leuconostoc mesenteroides)、植物乳杆菌(Lactobacillus plantarum)、发酵乳杆菌(Lactobacillus fermentum)和嗜酸乳杆菌(Lactobacillus acidophilus)为试验菌株,采用鲜辣椒汁为基础培养基,通过单因素试验确定最佳碳源、氮源和无机盐及其添加量。在此基础上,以上4种乳酸菌按照1∶1∶1∶1的配比混合后作为试验菌株,采用正交试验设计优化,多菌种发酵鲜辣椒汁培养基的配方。结果表明,最佳培养基配方为葡萄糖的添加量为4%,酵母浸膏的添加量为3%,磷酸氢二钾的添加量为0.2%,优化后培养基中乳酸菌浓度为8.45×109 CFU/mL,增殖效果良好。该研究为剁辣椒的产业化生产奠定了基础。  相似文献   

2.
在MRS基础培养基中,将瑞士乳杆菌和鼠李糖乳杆菌进行混合发酵培养,MRS培养基其他成分不变,对培养基中的碳源、有机氮源进行优化,通过单因素试验,得出最优的碳源为麦芽糖、有机氮源为大豆蛋白胨;对两株菌的混合培养液进行真空冷冻干燥,并对冻干过程中的离心条件以及冻干保护剂进行优化,结果表明,菌液在离心转速6 000 r/min,离心时间15 min,冻干保护剂添加量按质量分数为脱脂奶粉14%、海藻糖6%、甘油4%的条件下菌液的存活率最高。  相似文献   

3.
目的:研发低成本、高密度的乳酸菌发酵剂。方法:以从剁辣椒分离的发酵乳杆菌BLHN3为材料,在MRS培养基的基础上优化高密度发酵培养基及其培养条件。结果:发酵乳杆菌BLHN3的最佳碳源、氮源、缓冲盐、增菌因子分别是海藻糖30.0 g/L、大豆蛋白胨34.0 g/L、柠檬酸铵2.0 g/L、乙酸钠5.0 g/L、磷酸氢二钾2.0 g/L、胡萝卜汁10%,优化培养基的发酵乳杆菌活菌数可达6.05×109 CFU/mL。该培养基优化发酵工艺为初始培养pH为6、培养温度37℃、接种量3%、装液量30 mL。半连续高密度培养表明,离心培养3次最佳。结论:优化培养基及培养条件后,发酵乳杆菌BLHN3的菌体密度显著高于MRS培养基,提高了发酵乳杆菌BLHN3的生长活性。  相似文献   

4.
以XMRS为基础培养基对植物乳杆菌C8-1产细菌素的培养基组成和发酵条件进行了优化,结果表明:最佳碳源为蔗糖,最佳氮源为大豆蛋白胨.刺激因子Tween 80最佳添加量为3‰(体积分数).在大豆蛋白胨1.5%,牛肉膏1.5%,蔗糖2.0%(均为质量分数),初始pH值为6.5,30℃培养28 h条件下培养植物乳杆菌C8-1所产细菌素的效价可达到271.36 IU/mL,增长34.3%,优化后产细菌素能力提高,效果显著.  相似文献   

5.
为了更好地高效发挥乳酸菌的降胆固醇益生机制,提高降胆固醇能力,对3株具有降胆固醇乳酸菌进行高密度发酵培养。根据菌体密度选择菌株合适的碳源和氮源:选择葡萄糖作为植物乳杆菌117-1和鼠李糖乳杆菌118-1增菌培养基碳源;选择蔗糖作为粪肠球菌M53-2增菌培养基的碳源。选择酵母提取物作为植物乳杆菌117-1、鼠李糖乳杆菌118-1的氮源;选择蛋白胨作为粪肠球菌M53-2的氮源。通过正交试验得出:3株菌的最适培养温度均为37℃。植物乳杆菌117-1的最佳培养条件为p H6.4、接种量4%,鼠李糖乳杆菌118-1为p H6.4、接种量5%,粪肠球菌M53-2为p H6.2、接种量4%。通过单因素试验确定1:5(w:v)作为3株菌株与保护剂的比例,菌液添加量为3 mL。在菌制剂降胆固醇能力测试中,3株菌株菌制剂的胆固醇去除率差异显著且较之前相比有所提升。  相似文献   

6.
对从云南传统发酵豆豉分离得到的植物乳杆菌YM-2(Lactobacillus plantarum YM-2)菌株胞外多糖(exopolysaccharide,EPS)生物合成条件进行优化。首先对培养基成分中的碳源、氮源种类进行筛选;然后利用单因素试验分析碳源含量、氮源含量、培养时间以及培养温度对EPS产量的影响;最后采用Box-Behnken法进行四因素三水平响应面分析以确定其最优工艺条件。结果表明,植物乳杆菌YM-2菌株生物合成EPS最佳条件为碳源(葡萄糖)含量30 g/L、氮源(酵母粉)含量30 g/L、培养时间30.05 h、培养温度36.36℃,在此工艺条件下,植物乳杆菌YM-2 EPS产量为257.362 mg/L。  相似文献   

7.
运用Design-Expert 8.0设计实验并以响应面分析的方法进行发酵条件优化。研究了分别以菊芋全粉、菊粉和葡萄糖作为培养基碳源,对保加利亚乳杆菌(ASI.1482)生长情况的影响,并证明了菊芋全粉良好的发酵性能。结果表明:菊芋全粉、菊粉作为单一碳源的培养基对乳杆菌具有增殖的作用,利用菊芋全粉对乳杆菌的增殖作用要优于菊粉和葡萄糖,乳杆菌的增殖数量分别为菊粉的4.8倍、葡萄糖的9.6倍,菊芋全粉作为乳杆菌培养基碳源成分具有可行性,其最优发酵条件为碳源添加量为2.1%,发酵温度为36℃,接种量为10%,在此条件下保加利亚乳杆菌的菌落总数为2.2×109CFU/mL。  相似文献   

8.
泡菜直投式菌剂制备及应用研究   总被引:5,自引:1,他引:4  
本研究采用自行分离选育的植物乳杆菌进行增菌培养,确定了植物乳杆菌的增菌最佳培养基成分为:以添加2%的葡萄糖、1%的蛋白胨为基础培养基,加入5%蕃茄汁、6%辣椒汁、7.5%莴苣汁,增菌最佳培养条件为:培养温度为30℃、振荡频率为50r/min、发酵期间pH为6的条件下,植物乳杆菌的最高活菌数达3.56×109cfu/ml,5%麦芽糊精+5%蔗糖+0.8%海藻糖+0.2%吐温作为冻干保护剂所得结果最好,植物乳杆菌菌体的冷冻存活率为83.6%、冻干存活率为80.6%、冻干菌粉活菌数为2.37×1010cfu/g。使用直投式功能菌剂发酵青菜,在30℃条件下,盐水浓度为6% ̄8%,青菜发酵时间为4d,在25℃条件下,青菜发酵时间为5d,泡青菜产品具有较浓的乳酸发酵的香气,酸味纯正,滋味浓郁,酸度适中。  相似文献   

9.
以纳豆芽孢杆菌为出发菌,以菌液浊度OD660nm值为指标,对纳豆芽孢杆菌液体发酵培养基的碳源、氮源、pH进行优化。并通过试验确定了纳豆芽孢杆菌的最适接种量和最优发酵条件。试验结果:最优培养基为2%葡萄糖、4%蛋白胨、0.5%NaCl,pH7。最佳接种量为5%培养16h的发酵液,最优培养温度和时间分别为35℃,18h。  相似文献   

10.
以淘米水和猕猴桃为主要原料,经植物乳杆菌发酵制备淘米水-猕猴桃汁复配发酵饮料,探究植物乳杆菌接种量及发酵条件改变对发酵饮料品质的影响,并借助单因素及正交优化实验确定最佳发酵工艺条件为淘米水-猕猴桃汁复配比例1∶6,并以复配汁质量为基准确定植物乳杆菌接种量为1.5%,发酵24 h,蔗糖添加量为4%,柠檬酸添加量为0.07%。该工艺条件下制备的淘米水-猕猴桃汁复配发酵饮料兼具米香和猕猴桃果香,整体风味尚佳,酸甜适宜。  相似文献   

11.
为提高植物乳杆菌的增殖浓度,分别测定菌株在添加不同氮源、不同缓冲盐、不同浓度的MnSO4和不同促生长物质时菌株的生长浓度。结果表明,酵母类氮源是植物乳杆菌的最适氮源,缓冲盐在恒pH培养时对菌株生长无促进作用,锰浓度与最高活菌数呈正相关,在以酵母浸粉为氮源时植物乳杆菌培养不需要添加其他生长因子。进一步优化菌株的最适pH值和碳氮比,基于可耐受渗透压,优化恒pH培养和恒pH自动反馈补料培养基和培养工艺,得到各菌株的最适培养策略。3株菌的最适氮源添加量为40~45 g/L,MnSO4的最适添加量为0. 25 g/L,最适碳氮比为对数生长期生长速率被抑制时的碳氮消耗比。恒pH 5. 5自动反馈补料培养植物乳杆菌X1,活菌数达到4. 1×1010CFU/mL;恒pH 5. 5分批培养植物乳杆菌N8,活菌数达到2. 9×1010CFU/m L;恒pH 6. 0分批培养植物乳杆菌N9,活菌数达到6. 2×1010CFU/mL。该研究结果的应用将显著提高植物乳杆菌的工业化生产效率。  相似文献   

12.
从酸牛奶和泡菜等5个样品中分离到了23株菌。通过薄层色谱初筛之后,再经过HPLC复筛,得到6株具有转化谷氨酸钠生成γ-氨基丁酸(GABA)菌株。对转化量最高的菌株进行生理生化和分子生物学鉴定,鉴定该菌株为植物乳杆菌(Lactobacillus plantarum)。对该菌种的发酵培养基做了部分优化,得出了以下最佳条件:碳源为蔗糖(15 g/L),氮源为复合氮源(25 g/L),初始pH 6.2,添加1 mmol/L的Zn2+和Mn2+,谷氨酸钠的添加量为10 g/L。在已优化培养基培养,最佳菌龄为20 h。最终GABA转化量达到3.9 g/L。  相似文献   

13.
本研究以植物乳杆菌ZU018为研究对象,最终活菌数为主要参考指标,对其发酵培养基成分进行了优化。采用单因素实验选择碳源、氮源的种类及优化浓度,通过部分因子试验设计初步确定了麦芽糖、酵母浸粉及柠檬酸三铵为培养基中最主要的三个影响因素,进一步运用最陡爬坡试验及Box-Benhnken试验设计对培养基组分进行优化。结果表明,最佳优化培养基配方为:麦芽糖30.03 g/L、酵母浸粉37.50 g/L、牛肉浸粉25.00 g/L、柠檬酸三铵4.39 g/L、磷酸氢二钾2.00 g/L、乙酸钠5.00 g/L、硫酸镁 0.20 g/L、硫酸锰0.05 g/L以及1.00 g/L的吐温80。最终发酵液中植物乳杆菌ZU018活菌数相比优化前提高4.86倍,达到10.67×109 CFU/mL,为后续植物乳杆菌高密度发酵及应用提供了理论依据。  相似文献   

14.
柳州酸笋中降亚硝酸盐乳酸菌的筛选及鉴定   总被引:1,自引:0,他引:1  
为了获得适用于柳州酸笋发酵的降亚硝酸盐乳酸菌,利用MRS培养基对柳州酸笋中的乳酸菌进行分离、纯化及鉴定,并探讨影响菌株降解亚硝酸盐能力的因素。结果表明,共分离获得22株乳酸菌,用盐酸萘乙二胺法对这22株乳酸菌进行降亚硝酸盐能力测试,得到一株降解能力较强的乳酸菌LC-3-3,经分子生物学鉴定为植物乳杆菌(Lactobacillus plantarum);该菌株在以葡萄糖为碳源(20 g/L)、蛋白胨为氮源(10 g/L)、接种量为6%、pH值为6.0、温度为37 ℃的条件下,亚硝酸盐的降解率为76.58%,降解效果较好。  相似文献   

15.
采用响应面法对海南土地杆菌Pedobacter hninanensis 13-QT生产κ-卡拉胶酶的发酵条件进行了优化,通过Plackett-Burman实验方法研究碳源含量、氮源含量、无机盐、初始pH值、温度等9个发酵因子对菌株发酵产κ-卡拉胶酶活力的影响.结果表明,影响产酶的显著因子是温度、蛋白胨浓度和初始pH值.根据最陡爬坡实验结果确定显著影响因子的取值范围,并采用Box-Behnken设计实验进行优化,然后应用响应面模拟预测和摇瓶发酵实验验证.结果表明,产κ-卡拉胶酶的最佳条件为κ-卡拉胶1.5g/L,蛋白胨3.9g/L,NaCl 20g/L,K2HPO4 1 g/L,MgSO4 0.40g/L,CaCl2 0.12g/L,FeSO40.008g/L,发酵培养基初始pH值为6.9,温度30.3℃.经过优化后,发酵液中κ-卡拉胶酶酶活力达到3.387IU/mL,与优化前相比提高了5.04倍.  相似文献   

16.
目的筛选对谷胱甘肽产量影响显著的碳源和氮源,考察其浓度对产量的影响。方法通过单因素实验和正交试验确定最佳碳源、氮源和无机盐浓度。结果最佳培养基的基本组成:2.5%葡萄糖,1%酵母粉,0.3%硫酸铵,0.03%硫酸镁,1.2g/L磷酸氢二钾和1.8g/L磷酸二氢钾。结论确定了最优培养基组成。  相似文献   

17.
产谷胱甘肽酵母菌株培养基优化   总被引:2,自引:0,他引:2  
目的筛选对谷胱甘肽产量影响显著的碳源和氮源,考察其浓度对产量的影响。方法通过单因素实验和正交试验确定最佳碳源、氮源和无机盐浓度。结果最佳培养基的基本组成:2.5%葡萄糖,1%酵母粉,0.3%硫酸铵,0.03%硫酸镁,1.2g/L磷酸氢二钾和1.8g/L磷酸二氢钾。结论确定了最优培养基组成。  相似文献   

18.
不同植物乳杆菌发酵液抑菌活性及其主要有机酸组成比较   总被引:1,自引:0,他引:1  
对分离自云南传统发酵食品的18 株植物乳杆菌代谢产物的主要有机酸成分及对病原菌抑菌活性进行分析。采用Spot-on-lawn及琼脂扩散法研究不同植物乳杆菌代谢产物抑菌活性;通过高效液相色谱法分析主要有机酸的种类和产量;选取其中3 株植物乳杆菌对其进行包括生长曲线、pH值、抑菌活性在内的动态监测。结果表明,抑菌活性取决于不同的植物乳杆菌菌株、病原菌及发酵碳源。当大肠杆菌O157:H7作为病原菌、葡萄糖作为碳源时,植物乳杆菌YmL-4-5具有最高的抑菌活性;当沙门氏菌ATCC 6538作为病原菌、果糖作为碳源时,植物乳杆菌S5抑菌作用最强。数据证明植物乳杆菌发酵液的抑菌活性受上清液低pH值的影响,且主要抑菌物质为有机酸。有机酸的主要成分是乳酸(930.9~3 008.7 μg/mL),其次为苹果酸和乙酸。其中乳酸和乙酸的产量与其对大肠杆菌O157:H7的抑菌活性呈正相关(r分别为0.474、0.488,P<0.05)。本研究为研发新的生物防腐剂提供了理论依据。  相似文献   

19.
应用响应面法优化植物乳杆菌培养基配方以及利用中和法与指数流加法优化植物乳杆菌高密度培养的发酵条件。在单因素试验基础上,进一步采用SAS软件进行中心组合设计和响应面法优化发酵培养基。优化后的培养基配方为:葡萄糖质量分数5.43%、蛋白胨质量分数0.98%、K2HPO4质量分数0.59%。利用15L全自动发酵罐,在接种量3%、pH6.5、培养温度35℃的最佳条件下,采用氨水中和发酵培养基和指数流加碳、氮源,最终发酵液中植物乳杆菌菌体浓度达到9.3×109CFU/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号