首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study addresses the hydrogeochemistry of thermal springs that emerge from the Asmari limestone in a gorge at Changal Anticline in the vicinity of the Salman-Farsi dam. The Changal thermal springs vary in temperature between 28 and 40 °C. Chemical and isotopic compositions of the thermal waters suggest two distinct hydrogeological systems: a deep, moderate-temperature (∼40 °C) geothermal system recharged by deeply circulating meteoric waters, and a shallow cold aquifer system related to local groundwater. The source geothermal fluid temperature was calculated using different geothermometers and mineral saturation indexes. Based on chemical and isotopic data, it is hypothesized that: (1) mixing occurs between the ascending geothermal water and shallow cold water; (2) the resulting thermal waters reaching surface are a mixture of 80% local, shallow meteoric water and 20% geothermal water; and (3) the circulation depth of the meteoric water is about 1500 m. The thermal reservoir temperature is estimated to be between 70 and 80 °C according to calculations using different geothermometers and computation of saturation indices for different solid phases.  相似文献   

2.
Thermal waters from Quaternary volcanic rocks (predominantly andesites) discharge along faults in the Obama geothermal field of southwestern Japan. The chemistry of more than 100 thermal and ground water samples collected between 1936 and 2005 indicate that the Na–Cl hot spring waters are a mixture of “andesitic” magmatic, sea and meteoric waters. Mixing models and silica and cation geothermometry were used to estimate the SiO2 and Cl composition and the temperature (∼200 °C) of the reservoir fluids deep in the geothermal system. The isotopic data (18O and D) are consistent with a mixed origin interpretation of the waters feeding the Obama hot springs, i.e. a large proportion of meteoric and sea waters, and a small magmatic component. Temperatures and chemical concentrations of the thermal waters were affected by the 1944–1959 salt production operations, but have recovered after closure of the salt factories; now they are similar to their pre-1940 values. In the future, the Obama geothermal field may be suitable for electric power generation, although heat and fluid extraction will require careful management to prevent or minimize reservoir cooling.  相似文献   

3.
In order to assess the geothermal resources of the hot springs located in different tectonic regions of India, preliminary geophysical, geochemical and tritium studies were undertaken in Puga valley (Ladakh), Ratnagiri and Kolaba Districts (West Coast) and Bhimbandh (Bihar) areas. The studies indicate that out of the three areas investigated, the Puga valley is the most promising because of its higher geothermal gradient, association of spring waters with magmatic components, its higher estimated reservoir temperature (≥ 200°C) and probable larger available supply of groundwater.  相似文献   

4.
Phrao Basin is famous for its geothermal and seismic activities. There are five geothermal manifestations along the western margin of the basin. These geothermal sites are probably controlled by the major fault extending northward from the Sankamphaeng geothermal field. Geological, geochemical and geophysical studies, along with 2 boreholes of 150 m depth, were aimed at investigating the potential of this area. The results indicated that the intermediate depth of the geothermal reservoir may produce enough hot fluids for various uses, albeit on a small-scale. Several industries that could be attracted to Phrao Basin by development of these geothermal areas have been identified.  相似文献   

5.
Hot spring waters of the La Selva geothermal system show high concentrations of Cl, F, Ca, Na, K, Li, Si, As, Ba, and Rb, whereas cold waters show low salinity, high concentrations of NO3, and significant As content when mixed with geothermal waters.Modeling of the geothermal fluids indicates that the fluid is supersaturated with aragonite and calcite, which matches the travertine precipitation close to the present discharge areas. Moreover, the barite and fluorite are also are near equilibrium levels, indicating possible control of Ba and F solubility by these mineral phases, which also precipitate in some discharge areas. Likewise, the fluid is supersaturated with respect to quartz, indicating the possibility of siliceous precipitation near the discharge areas of the present geothermal fluids.Taking into account the Na-K, Na-K-Ca, and SiO2-temperature geothermometers, the temperature of the reservoir may be estimated to be about 135 °C.The chemistry of the geothermal fluids has changed from a recent high-enthalpy system, which precipitated siliceous deposits, to the present low-enthalpy system, which precipitates carbonated deposits (travertine).Multivariate analysis of the groundwater shows high correlations between K, Ca, As, Br, Ag, and Ba, suggesting that As is introduced to the environment via geothermal fluids. Moreover, As concentrations in hot groundwater are associated with high concentrations of Li and Si, as has been observed in other geothermal fields. Metal concentrations in the hydrothermal deposits show high values of Ag, As, Ba, Pb, Sb, and Zn, mainly in the siliceous deposits of the town of Caldes de Malavella, where the geothermal system deposited materials with high As concentrations (123-441 ppm).The similarities between the geochemical characteristics of the hydrothermal deposits and the groundwater suggest that the metals in these deposits and fluids have the same origin.  相似文献   

6.
The Cordón Caulle geothermal system is located in a NW-trending volcano-tectonic depression of the Southern Andean Volcanic Zone of Chile. Outflows of low chloride water were previously interpreted as the surface expression of a shallow steam-heated aquifer, with subsurface temperatures of 150–170 °C. Gas data from fumaroles and hot springs have been used to assess the nature and temperature of the deeper, underlying geothermal reservoir. Fumaroles at the northeastern border of Cordón Caulle have 3He/4He ratios typical of subduction margins (6–7 RA) and N2/Ar ratios of about 40, indicating deep convection of air-saturated groundwater. Fumaroles at the southwestern border have N2/Ar ratios >300, suggesting the presence of a deep volcanic component. Gas ratios of fumarole discharges yield equilibration temperatures >300 °C, whereas those of hot spring waters suggest temperatures of about 160 °C. Based on these data, and comparisons with well documented liquid and vapor-dominated geothermal systems, a model is proposed of a boiling liquid-dominated geothermal system overlain by a secondary steam-heated aquifer.  相似文献   

7.
Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some exploration boreholes and was found to be useful for understanding subsurface flow characteristics and developing a conceptual model of the system. The results illustrate how temperature profiles illuminate varying pressure versus depth characteristics and can be used alone in cases where staged drilling is not practical. The extensive exploration activities helped define optimal fluid production and injection areas, and showed that the system could provide sufficient hot fluids (∼57 °C) to run a 400-kWe binary power plant, which came on line in 2006.  相似文献   

8.
The low-temperature geothermal field of Nea Kessani, located in NE Greece, is characterized by a thermal reservoir made up of arkosic sandstones. The temperature distribution at depth, inferred from exploratory and productive wells, indicates that hot fluids rising from depth enter the arkosic reservoir in a restricted area of the field and flow towards local thermal springs. Well production tests have revealed the presence of hydrogeological boundaries within the arkosic reservoir.The geochemical characteristics of the thermal waters, which have an NaCl/HCO3 composition and salinity varying between 5 and 6 g/L, indicate that these waters undergo conductive cooling within the reservoir. No admixture of waters from the aquifers in the cover has been observed. The slight chemical differences existing between the thermal waters are probably caused by CO2, which represents about two thirds by volume of the discharged fluid. This CO2, as indicated by its isotopic composition, could originate from decomposition of marbles of the Paleozoic basement underlying the arkosic reservoir and may also affect the isotopic composition of the thermal waters, which exhibit an interesting positive oxygen shift. However, such a shift could also be the result of water-rock exchange processes at low temperatures, since the water feeding the field comes from a regional circulation which, as indicated by its deuterium content, has recharge areas on the Rhodope Chain. Alternatively, the shift could be attributed to the contribution of a deep-seated high-temperature geothermal reservoir, but a present there is no evidence of high-temperature resources in the region. A maximum temperature of 110°C has been estimated by quartz geothermometry.The physical, chemical and hydrogeological data available so far have permitted us to formulate a fluid circulation model for the Nea Kessani geothermal field.  相似文献   

9.
A schematic model showing the sources of hot waters being discharged at the surface in the Kuju-Iwoyama of the Kuju volcano has been developed. Based on the isotopic characteristics of these fluids it is inferred that deep magmatic fluid mixes with thermal waters derived from rainwater in a shallow geothermal reservoir, and with local groundwaters in a deeper reservoir. These thermal waters feed hot springs that discharge waters with Cl/SO4 ratios that differ from that of the fumaroles on Kuju-Iwoyama, due to the addition of SO42− ions produced by the decomposition of native sulfur and mixing with magmatic fluid of high Cl content.  相似文献   

10.
Geological, geochemical and geophysical studies have been carried out in the Soufrière caldera, St. Lucia, Lesser Antilles. The results are in accordance with the data obtained from previously drilled wells. In particular, these studies have also been used to: (i) determine the extent of the heat anomaly; (ii) indicate the levels containing hot geothermal fluids for high enthalpy exploitation; (iii) estimate the nature and extent of the reservoir; (iv) construct a preliminary model of the geothermal system, with a fluid at 220°C and a deeper one at about 350°C, both originating from a concentrated brine. Heat flux is estimated to be 6–7 times the average terrestrial value (250 – 290 mW/m2); (v) determine the most favourable areas for deep drilling.  相似文献   

11.
Chemical and isotopic analyses of thermal and nonthermal waters and of gases from springs and fumaroles are used to evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Chemically distinct geothermal surface manifestations generally occur in separate hydrogeologic areas within this 400 km2 region: low-pressure fumaroles with temperatures near local boiling occur at 1470 m elevation in a sulfur mine near the summit of Tecuamburro Volcano; non-boiling acid-sulfate hot springs and mud pots are restricted to the Laguna Ixpaco area, about 5 km NNW of the sulfur mine and 350–400 m lower in elevation; steam-heated and thermal-meteoric waters are found on the flanks of Tecuamburro Volcano and several kilometers to the north in the andesitic highland, where the Infernitos fumarole (97°C at 1180 m) is the primary feature; neutral-chloride hot springs discharge along Rio Los Esclavos, principally near Colmenares at 490 m elevation, about 8–10 km SE of Infernitos. Maximum geothermometer temperatures calculated from Colmenares neutral-chloride spring compositions are 180°C, whereas maximum subsurface temperatures based on Laguna Ixpaco gas compositions are 310°C. An exploration core hole drilled to a depth of 808 m about 0.3 km south of Laguna Ixpaco had a bottom-hole temperature of 238°C but did not produce sufficient fluids to confirm or chemically characterize a geothermal reservoir. Hydrogeochemical data combined with regional geologic interpretations indicate that there are probably two hydrothermal-convection systems, which are separated by a major NW-trending structural boundary, the Ixpaco fault. One system with reservoir temperatures near 300°C lies beneath Tecuamburro Volcano and consists of a large vapor zone that feeds steam to the Laguna Ixpaco area, with underlying hot water that flows laterally to feed a small group of warm, chloriderich springs SE of Tecuamburro Volcano. The other system is located beneath the Infernitos area in the andesitic highland and consists of a lower-temperature (150–190°C) reservoir with a large natural discharge that feeds the Colmenares hot springs.  相似文献   

12.
Fluid and heat discharge rates of thermal springs of El Chichón volcano were measured using the chloride inventory method. Four of the five known groups of hot springs discharge near-neutral Na–Ca–Cl–SO4 waters with a similar composition (Cl ∼ 1500–2000 mg kg−1 and Cl/SO4 ∼ 3) and temperatures in the 50–74 °C range. The other group discharges acidic (pH 2.2–2.7) Na–Cl water of high salinity (>15 g/L). All five groups are located on the volcano slopes, 2–3 km in a straight line from the bottom of the volcano crater. They are in the upper parts of canyons where thermal waters mix with surface meteoric waters and form thermal streams. All these streams flow into the Río Magdalena, which is the only drainage of all thermal waters coming from the volcano. The total Cl and SO4 discharges measured in the Río Magdalena downstream from its junction with all the thermal streams are very close to the sum of the transported Cl and SO4 by each of these streams, indicating that the infiltration through the river bed is low. The net discharge rate of hydrothermal Cl measured for all thermal springs is about 468 g s−1, which corresponds to 234 kg s−1 of hot water with Cl = 2000 mg kg−1. Together with earlier calculations of the hydrothermal steam output from the volcano crater, the total natural heat output from El Chichón is estimated to be about 160 MWt. Such a high and concentrated discharge of thermal waters from a hydrothermal system is not common and may indicate the high geothermal potential of the system. For the deep water temperatures in the 200–250 °C range (based on geothermometry), and a mass flow rate of 234 kg s−1, the total heat being discharged by the upflowing hot waters may be 175–210 MWt.  相似文献   

13.
In this paper we analyze the main available data related to the geothermal system of Ischia Island, starting from the first geothermal exploration in 1939. Our aim is to define a conceptual model of the geothermal reservoir, according to geological, geochemical, geophysical and stratigraphic data. In recent times, the interest on geothermal exploitation for electricity generation in Italy is rapidly increasing and the Ischia Island is one of the main targets for future geothermal exploitation. Nowadays, one of the main economic resources of the island is the tourism, mainly driven by the famous thermal springs; so, it is crucial to study the possible interaction between geothermal exploitation and thermal spring activities. To this aim, we also analyze the possible disturbance on temperature and pressure in the shallow geothermal reservoir, due to the heat withdrawal for electric production related to small power plant size (1–5 MWe). Such analysis has been performed by using numerical simulations based on a well known thermofluid-dynamical code (TOUGH2®). Obtained results show that such geothermal exploitation generates a perturbation of temperature and pressure field which, however, is confined in a small volume around the well. At shallow level (0–100 m) the exploitation does not produce any appreciable disturbance, and can be made compatible with thermal spring exploitation. Moreover, such results are crucial both for the evaluation of volcanological processes in the island and for the general assessment of geothermal resource sustainability.  相似文献   

14.
In Greece the geothermal areas are located in regions of Quaternary or Miocene volcanism and in continental basins of high heat flow. The existence of high-temperature (>200 °C) resources has been proven by deep drilling on the islands of Milos and Nisyros and inferred on the island of Santorini by its active volcanism. Elsewhere, geological investigations, geochemical analyses of thermal springs and shallow drilling have identified many low-temperature (<100 °C) reservoirs, utilized for spas and greenhouse/soil heating. Ternary K–Na–Mg geothermometer data suggest deep, medium-temperature resources (100–200 °C) in Sousaki, the islands of Samothraki, Chios and Lesvos, in the basins of Nestos River Delta and Alexandroupolis and in the graben of Sperchios River. In the basins of northern Greece these resources are also inferred from deep oil exploration well data.  相似文献   

15.
Development of the Wairakei geothermal resource has resulted in changes to the chemistry of the discharged fluids. The output of hot chloride springs declined rapidly and eventually ceased 10 years after the commencement of drilling. Deep pressures were drawn down by well discharge resulting in an increase in size and pressure of the shallow steam zone. Natural heat flow in the Karapiti Thermal Area increased from 40 MWt in 1950 to 420 MWt in 1964. Reduced reservoir pressures have also caused cool and less-mineralised water to enter the Western Borefield production reservoir. This reduced the average chloride concentration in the well discharges from 1580 g/t in 1960 to 1230 g/t in 2001. By this time 34% of the well discharge was from cool inflowing water and this has decreased to 27% in 2004. Since the mid-1980s production at Wairakei has been increasingly supported by fluid extracted from the Te Mihi sector. “Dry” steam wells, with gas concentrations up to 3.2 wt%, were brought into service in 1989, and in the last decade production has been added from deep liquid wells. By October 2007 the total gas flow to the Wairakei and Poihipi Power Stations was 9500 kg/h. Temperatures (∼250 °C) and compositions of the deep Te Mihi wells are close to the inferred initial reservoir conditions. The commencement of injection in 1995 and an increase in shallow groundwater drainage have increased concentrations of calcium and CO2 in total discharge. This has resulted for the first time in problems of calcite scaling in some wells although chemical evidence of injection returns is inconclusive.  相似文献   

16.
The volcano Chichontepeque (San Vicente) is one of the nine recent volcanoes making up the El Salvador sector of the WNW-ESE-trending active Central American volcanic belt. Thermal activity is at present reduced to a few thermal springs and fumaroles. The most important manifestations (Agua Agria and Los Infernillos Ciegos) are boiling springs and fumaroles located on the northern slope of the volcano (850 m a.s.l.) along two radial faults. The chloride acid waters of the Los Infernillos area are partly fed by a deep hydrothermal aquifer (crossed at 1100–1300 m by a geothermal exploration well), which finds a preferential path to the surface through the radial fault system. C02 is the most important gas (>90%) of the Los Infernillos Ciegos and Agua Agria fumaroles. Part of the Los Infernillos gases may also come from a deeper, hotter source, given their high HCl/Stot. ratio and their more reducing conditions. The application of geothermometric and geobarometric methods to the gases and thermal waters suggests that both thermal areas are linked to the identified 1100–1300 m reservoir, whose temperature (250°C), lateral extension and chemical composition, as resulting from this study, are of interest for industrial development.  相似文献   

17.
The Efteni and Derdin geothermal areas are located in northwestern Turkey. Relatively low-temperature springs emerge from the Duzce Fault, a normal-component-dominated fault segment of the North Anatolian Fault System. The thermal waters of the Efteni and Derdin Springs show distinct geochemical and isotopic characteristics since they originate from different geothermal reservoirs and reflect the effects of different water–rock interaction processes. Geothermometry revealed higher reservoir temperatures for the Efteni system, however a strong δ18O shift, interpreted as being the result of isotopic exchange at high temperatures, was observed in the Derdin system. Hydrogeological and geochemical techniques are applied to identify recharge mechanisms, water–rock interaction processes and to construct conceptual models of these geothermal systems.  相似文献   

18.
Reconnaissance surveys undertaken since the 1960s show that more than 200 geothermal prospects with significant active surface manifestations occur throughout Indonesia. Some 70 of these were identified by the mid-1980s as potential high-temperature systems using geochemical criteria of discharged thermal fluids. Between 1970 and 1995, about 40 of these were explored using geological mapping, geochemical and detailed geophysical surveys. Almost half of the surveyed prospects were tested by deep (0.5–3 km) exploratory drilling, which led to the discovery of 15 productive high-temperature reservoirs. Several types of reservoirs were encountered: liquid-dominated, vapour-dominated, and a vapour layer/liquid-saturated substratum type. All three may be modified by upflows (plumes) containing magmatic fluid components (volcanic geothermal systems). Large, concealed outflows are a common feature of liquid-dominated systems in mountainous terrain. All explored prospects are hosted by Quaternary volcanic rocks, associated with arc volcanism, and half occur beneath the slopes of active or dormant stratovolcanoes. By 1995, five fields had been developed by drilling of production wells; three of them supplied steam to plants with a total installed capacity of 305 MWe. By 2000, with input from foreign investors, the installed capacity had reached 800 MWe in six fields, but geothermal developments had stalled because of the 1997–1998 financial crisis.  相似文献   

19.
The Wairakei geothermal field has been under production for more than 50 years. Exploration wells show that the high-temperature and very permeable, productive resource extends over about 12 km2 within a greater area of about 25 km2 that shows various effects of thermal activity. Up to 2006, 3 km3 of fluid and 2750 PJ of energy had been extracted at an average rate of 5250 t/h and enthalpy of 1130 kJ/kg. Significant production started in 1955 and up to 1978 there was no injection of cooled geothermal fluids. During the first decade of operation a pressure drawdown of up to 20 bars (2 MPa) developed and spread evenly across the reservoir, even though fluid extraction was focused within an area of 1 km2 close to the northeastern field boundary. This pressure reduction resulted in widespread boiling and formation of segregated steam zones at the top of the reservoir together with inflow of cooler fluids into its northeastern part via the original natural outflow channels. From 1975 to 1997 pressures in the deep liquid reservoir stabilized at 23–25 bars (2.3–2.5 MPa) below the original pressure, with little change up to the time injection commenced in 1998. This natural pressure support indicates that prior to injection there was substantial recharge, 80% of which is assessed as high-temperature deep inflow. Since 1998 about 30% of the extracted fluids have been injected and reservoir pressures have increased by 3–4 bars (0.3–0.4 MPa). To date, significant returns of injected fluids have not been detected in the production areas. Over the 50 years of operation, temperatures in the main production areas have declined from 250 to 220 °C while deeper production zones toward the western boundary of the reservoir have remained at about 250 °C. A series of deeper makeup wells to maintain future production have been drilled in the high-temperature recharge area. An increasing fraction of injection, both in-field and out-field is planned over the next few years.  相似文献   

20.
Chemical geothermometry of hot springs in northern Thailand indicates that many have reservoir temperatures in excess of 150°C and some in excess of 180°C. Measurements of temperatures in abandoned oil wells in Fang Basin indicate geothermal gradients of 70 – 130 mK/m. The high geothermal gradient may be the result of extensional tectonics in northern Thailand, caused indirectly by sea-floor spreading in the Andaman Sea. Relatively high reservoir temperatures and shallow reservoir depths suggest that hot spring areas in northern Thailand may be potential sources of geothermal energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号