首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
人脸空间是嵌套在高维观测空间中的低维流形,为了更好地描述人脸空间的凸起和凹进等细微结构,提出了一种基于二维测地线距离保持映射的人脸识别算法。算法采用矩阵的模式表示人脸空间中的样本图像;基于图像的矩阵表示模型,采用二维测地线距离保持映射算法计算人脸空间的低维嵌套流形;以人脸样本在低维流形空间中的投影为特征进行人脸识别。在CMU PIE人脸数据库上的实验结果验证了算法的合理性和有效性。  相似文献   

2.
提出一种基于图像矩阵判别局部保持投影的人脸识别方法。图像矩阵判别局部保持投影是在局部保持投影基础上进行了扩展,考虑了类标签信息并在其目标函数中增加类间散度约束,使得求解的特征更具判别性。另外,图像矩阵判别局部保持投影是直接处理图像矩阵而不需要将矩阵转化为向量,保留了像素间的空间位置关系,避免了奇异性问题。实验结果表明该方法是有效的。  相似文献   

3.
随着国内外对社会安全和反恐的日益重视,步态识别技术在远程监控中越来越显示出其独特优势;但由于步态识别存在诸多的困难,在现阶段仍未形成实用性的方法和理论框架,其关键问题是维数约简和特征提取;在局部保持映射的基础上,提出了一种正交判别局部保持映射的步态识别算法,用真实步态图像数据库上的实验结果表明该方法是有效可行的。  相似文献   

4.
局部保持投影(LPP)通过构造近邻图来保持样本的局部结构,在构图过程中,LPP面临复杂的参数选择问题.为解决此问题,提出无参数局部保持投影(PLPP)算法.首先设计一种无参数的构图方法,能够动态地获取样本的近邻点并配置相应的边权.其次,利用该构图方法,PLPP通过寻求最佳投影矩阵,用于保持样本在低维空间的局部结构.由于PLPP在构图过程中并未设置任何参数且采用余弦距离设置边权,因此PLPP计算更加方便快捷且对离群样本更具鲁棒性.另外,为进一步提升PLPP的识别性能,在PLPP的基础上通过加入样本的类别信息,提出监督的无参数局部保持投影算法(SPLPP).最后,在ORL、FERET及AR人脸库上的实验验证了PLPP与SPLPP的有效性.  相似文献   

5.
安亚静  王士同 《计算机工程》2011,37(17):178-180,184
在进行降维时数据集合的多样性要求降维算法求解问题具有灵活性。为此,利用加入指数 来调节局部保持映射算法的约束条件,通过实验观察该指数的引入对降维以及识别率的影响,并总结指数 的范围和设计经验。实验结果表明,指数 可以影响降维效果,使维数降得更低,通过调节提高人脸识别率,在加入高斯白噪声后通过调节指数p也可改善识别的效果。  相似文献   

6.
龚劬  华桃桃 《计算机应用》2012,32(2):528-534
局部保持投影算法是基于流形的学习方法,在人脸识别过程中容易遇到奇异值问题,为此提出一种利用奇异值分解的方法。在模型中,样本数据被投影到一个非奇异正交矩阵中,解决了奇异值问题;然后再根据局部保持投影算法求出新样本空间的低维投影子空间。将训练样本和测试样本分别投影到低维子空间中,再利用最近邻分类器进行分类识别。在ORL人脸数据库中,采用了一系列的实验来对比该算法与传统局部保持投影算法和主成分分析算法的识别效果。实验结果验证了改进的局部保持投影算法在人脸识别的有效性。  相似文献   

7.
局部保持流形学习算法通过保持局部邻域特性来挖掘隐藏在高维数据中的内在流形结构。然而,对于缺乏足够训练样本的高维数据集,或者高维数据集存在非线性结构和高维数据特征中存在冗余、干扰特征,使得在原特征空间中利用欧式距离定义的邻域关系并不能真实反映数据的内在流形结构,从而影响算法的性能。提出利用正约束寻找特征子空间的方法,使得在此子空间中更多的同类样本紧聚,并进一步在该子空间中构建邻域关系来挖掘高维数据的内在流形,形成基于特征子空间邻域特性的局部保持流形学习算法(NFS-LPP和NFS-NPE)。它们在一定程度上克服了高维小样本数据集难以正确挖掘内在流形结构的问题,在Yale和ORL人脸库上的分类和聚类实验验证了其有效性。  相似文献   

8.
双向二维局部保持映射(双向2DLPP)与二维局部保持映射(2DLPP)比较,双向2DLPP同时对图像的行方向和列方向进行降维处理,可以采用较少的系数有效地表示图像。为了进一步增强双向2DLPP算法的分类能力,将双向2DLPP所提取的特征采用线性判别式分析(LDA)进行分类,从而形成了一种新的监督算法:鉴别双向二维局部保持投影。理论分析表明,无论在计算量还是内存要求方面,所提鉴别双向二维局部保持投影算法比双向2DLPP和主成分分析+线性判别式分析(PCA+LDA)要少,而且在ORL 和Yale数据库上的人脸识别实验表明,新算法的识别性能比双向2DLPP和PCA+LDA算法要好,且具有较少的计算复杂度。  相似文献   

9.
一种基于Schur分解的正交鉴别局部保持投影方法   总被引:2,自引:0,他引:2       下载免费PDF全文
人脸识别是模式识别领域中的一项重要的研究课题。到目前为止,已经提出了许多方法来处理人脸的识别问题。最近,许多流形学习算法被提出并且成功地应用于人脸识别当中。这些流形学习方法能够保持人脸图像数据的局部结构,同时,还可以发现人脸的非线性结构。在这些流形学习方法中,局部保持投影方法(LPP)是最有效的方法之一。基于LPP方法,提出了一种新的人脸识别方法——基于Schur分解的正交鉴别局部保持投影方法(ODLPPS)。与LPP方法相比,ODLPPS 把类间散度与类内散度之差的信息融入到LPP的目标函数中并且获得了正交的基向量。在ORL和Yale 人脸数据库上的实验结果表明,该方法在识别性能上优于一些已经存在的方法,如eigenface,Fisherface,LPP 和orthogonal LPP(OLPP)。  相似文献   

10.
局部保持投影算法(locality preserving projections,LPP)作为降维算法,在机器学习和模式识别中有着广泛应用。在识别分类中,为了更好的利用类别信息,在保持样本点的局部特征外,有效地从高维数据中提取出低维的人脸图像信息并提高人脸图像的识别率和识别速度,使分类达到一定优化,基于LPP算法结合流形学习思想,通过构造一种吸引向量的方法提出一种改进的局部保持投影算法(reformation locality preserve projections ,RLPP)。将数据集利用极端学习机分类器进行分类后,在标准人脸数据库上的进行试验,实验结果证明,改进后算法的识别率优于LPP算法、局部保持平均邻域边际最大化算法和鲁棒线性降维算法,具有较强的泛化能力和较高的识别率。  相似文献   

11.
In face recognition, when the number of images in the training set is much smaller than the number of pixels in each image, Locality Preserving Projections (LPP) often suffers from the singularity problem. To overcome singularity problem, principal component analysis is applied as a preprocessing step. But this procession may discard some important discriminative information. In this paper, a novel algorithm called Optimal Locality Preserving Projections (O-LPP) is proposed. The algorithm transforms the singular eigensystem computation to eigenvalue decomposition problems without losing any discriminative information, which can reduce the computation complexity. And the theoretical analysis related to the algorithm is also obtained. Extensive experiments on face databases demonstrate the proposed algorithm is superior to the traditional LPP algorithm.  相似文献   

12.
面向酉子空间的二维判别保局投影的人脸识别*   总被引:1,自引:0,他引:1  
保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法的基础上增加了类别信息,而且直接在灰度矩阵上进行水平和垂直方向上的二维保局投影。该方法构造酉空间上的复向量后再运用线性判别分析提取特征。在ORL、Yale和XJTU人脸库中验证了算法的正确性和有效性,其识别率比传统的2DLDA和2DLPP等方法提高4~5个百分点。  相似文献   

13.
针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维。理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维数据中的有效信息,降低计算复杂程度,提高算法的运行效率,同时还能够克服存在外点情况下分类准确率较低问题,提高算法的鲁棒性。通过选择不同的人脸数据库进行实验,实验结果表明,在存在外点的情况下,运用最近邻分类器时能够取得更高的分类准确率,同时所需的分类时间有所减少。  相似文献   

14.
通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩阵,提出无参数的二维判别局部投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。  相似文献   

15.
针对多线性分析算法对多姿态多身份因素并存时,人脸的识别率大大下降等问题,提出了带监督的局 部保留投影映射算法与多线性张量分析算法相结合的人脸识别方法。该方法将人脸转动的近邻点信息作为监 督信息引入,更精确地描述了姿态空间的非线性结构,再结合张量分解和核函数将姿态流形系数映射到高维图 像空间,使得从低维空间到高维空间映射的精确性得以提高。在东方人脸数据库上进行实验,结果验证了该算 法的有效性。  相似文献   

16.
Regularized locality preserving discriminant analysis for face recognition   总被引:1,自引:0,他引:1  
This paper proposes a regularized locality preserving discriminant analysis (RLPDA) approach for facial feature extraction and recognition. The RLPDA approach decomposes the eigenspace of the locality preserving within-class scatter matrix into three subspaces, i.e., the face space, the noise space and the null space, and then regularizes the three subspaces differently according to their predicted eigenvalues. As a result, the proposed approach integrates discriminative information in all of the three subspaces, de-emphasizes the effect of the eigenvectors corresponding to the small eigenvalues, and meanwhile suppresses the small sample size problem. Extensive experiments on ORL face database, FERET face subset and UMIST face database illustrate the effectiveness of the proposed approach.  相似文献   

17.
针对局部保留投影算法(LPP)的无监督和非正交问题,提出了一种有监督的正交局部保留投影算法SOLPP。该算法同时考虑了样本的类别信息以及投影向量间的相互正交性,首先利用样本的类标签信息重新定义了类内和类间相似度矩阵,同时最大化类间离散度与类内离散度之比,有效地保持了样本的局部结构;其次对投影基向量进行正交化,在保持数据空间结构的同时进一步提高了人脸识别效果。在ORL和FERET人脸库上的实验表明,该方法的识别率要优于SLPP等算法。  相似文献   

18.
We propose in this paper two improved manifold learning methods called diagonal discriminant locality preserving projections (Dia-DLPP) and weighted two-dimensional discriminant locality preserving projections (W2D-DLPP) for face and palmprint recognition. Motivated by the fact that diagonal images outperform the original images for conventional two-dimensional (2D) subspace learning methods such as 2D principal component analysis (2DPCA) and 2D linear discriminant analysis (2DLDA), we first propose applying diagonal images to a recently proposed 2D discriminant locality preserving projections (2D-DLPP) algorithm, and formulate the Dia-DLPP method for feature extraction of face and palmprint images. Moreover, we show that transforming an image to a diagonal image is equivalent to assigning an appropriate weight to each pixel of the original image to emphasize its different importance for recognition, which provides the rationale and superiority of using diagonal images for 2D subspace learning. Inspired by this finding, we further propose a new discriminant weighted method to explicitly calculate the discriminative score of each pixel within a face and palmprint sample to duly emphasize its different importance, and incorporate it into 2D-DLPP to formulate the W2D-DLPP method to improve the recognition performance of 2D-DLPP and Dia-DLPP. Experimental results on the widely used FERET face and PolyU palmprint databases demonstrate the efficacy of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号