首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical forces are important modulators of cellular function in many tissues and are particularly important in the cardiovascular system. The endothelium, by virtue of its unique location in the vessel wall, responds rapidly and sensitively to the mechanical conditions created by blood flow and the cardiac cycle. In this study, we examine data which suggest that steady laminar shear stress stimulates cellular responses that are essential for endothelial cell function and are atheroprotective. We explore the ability of shear stress to modulate atherogenesis via its effects on endothelial-mediated alterations in coagulation, leukocyte and monocyte migration, smooth muscle growth, lipoprotein uptake and metabolism, and endothelial cell survival. We also propose a model of signal transduction for the endothelial cell response to shear stress including possible mechanotransducers (integrins, caveolae, ion channels, and G proteins), intermediate signaling molecules (c-Src, ras, Raf, protein kinase C) and the mitogen activated protein kinases (ERK1/2, JNK, p38, BMK-1), and effector molecules (nitric oxide). The endothelial cell response to shear stress may also provide a mechanism by which risk factors such as hypertension, diabetes, hypercholesterolemia, and sedentary lifestyle act to promote atherosclerosis.  相似文献   

2.
Rab3D, a member of the ras-related GTP-binding protein Rab family, is localized to secretory granules of various exocrine tissues such as acinar cells of the pancreas, chief cells of the stomach, and parotid and lacrimal secretory cells. To elucidate the function of Rab3D in exocytosis, we have generated transgenic mice that over-express Rab3D specifically in pancreatic acinar cells. Hemagglutinin-tagged Rab3D was localized to zymogen granules by immunohistochemistry, and was shown to be present on zymogen granule membranes by Western blotting; both results are similar to previous studies of endogenous Rab3D. Secretion measurements in isolated acinar preparations showed that overexpression of Rab3D enhanced amylase release. Amylase secretion from intact acini of transgenic mice 5 min after 10 pM cholecystokinin octapeptide (CCK) stimulation was enhanced by 160% of control. In streptolysin-O-permeabilized acini of transgenic mice, amylase secretion induced by 100 microM GTP-gamma-S was enhanced by 150%, and 10 microM Ca2+-stimulated amylase secretion was augmented by 206% of that of the control. To further elucidate Rab3D involvement in stimulus-secretion coupling, we examined the effect of CCK on the rate of GTP binding to Rab3D. Stimulation of permeabilized acini with 10 pM CCK increased the incorporation of radiolabeled GTP into HA-tagged Rab3D. These results indicate that overexpression of Rab3D enhances secretagogue-stimulated amylase secretion through both calcium and GTP pathways. We conclude that Rab3D protein on zymogen granules plays a stimulatory role in regulated amylase secretion from pancreatic acini.  相似文献   

3.
Beta-lactamase production is one of the major mechanisms of resistance amongst bacteria especially the enteric bacilli. The purpose of this study is to assess the in-vitro activity of Sulperazon, a combination of cefoperazone and an irreversible beta-lactamase inhibitor, sulbactam, against the cefoperazone resistant isolates of aerobic gram-negative bacilli. A total of 92 such strains were tested. It was found that at a concentration of < or = 8 mg/l of sulbactam added to cefoperazone 82% of Klebsiella spp, 100% of E. coli, 100% of Enterobacter spp, 33% of Pseudomonas aeruginosa, 67% of Pseudomonas spp and 62% of Acinetobacter spp that were resistant to cefoperazone alone were susceptible to the combination. Hence it is concluded that the addition of sulbactam to cefoperazone does expand the spectrum of the in-vitro activity of cefoperazone.  相似文献   

4.
1. Procaine (0.03-10 mM) inhibited carbachol (CCh)-induced amylase release from rat isolated pancreatic acini in a competitive manner. Kinetic analysis of the relation between CCh concentrations and the amount of amylase released in the presence of various procaine concentrations indicated that procaine caused competitive inhibition with the affinity constant (pA2) value of 5.00 +/- 0.08. 2. Receptor binding assay confirmed that procaine (0.01-10 mM) competitively inhibited [N-methyl-3H]-scopolamine chloride ([3H]-NMS) binding to its receptor with binding affinity (pKi) of 4.63 +/- 0.10. 3. Procaine transformed CCh-evoked [Ca2+]i dynamics: the initial rise in [Ca2+]i followed by a gradual decay during continuous stimulation with 3 microM CCh was transformed by 0.3 mM procaine to the oscillatory [Ca2+]i dynamics, which resembled the response to 0.3 microM CCh in the absence of procaine. The initial phase of [Ca2+]i oscillation corresponded to the initial phase of CCh-induced amylase release in isolated perfused acini. 4. Procaine (0.3-3 mM) did not inhibit the secretory response to cholecystokinin octapeptide (CCK-8) in isolated incubated acini. A higher concentration of procaine (10 mM) caused weak but significant inhibition of the response to only limited concentrations of CCK-8, 30 and 100 pM. Procaine lower than 10 mM was ineffective on [125I]-BH-CCK-8 binding, although procaine (10 mM) caused weak but significant inhibition of the binding.  相似文献   

5.
1. Histamine acted on H2 receptors in rat parotid tissues and induced the amylase secretion. Immunoblot analysis by using anti-H2 receptor protein antiserum demonstrated that histamine induced the increase and decrease in the amounts of H2 receptor proteins in basolateral and intracellular membranes, respectively. 2. Short-term treatment with histamine resulted in decreases in amylase secretion, the density of H2 receptors and their affinity for the agonists during further incubation with histamine, but showed an unaltered secretory response to isoproterenol, indicating that the histamine-induced desensitization was confined to H2 receptors. 3. This treatment triggered a 20% decrease in the histamine-stimulated adenylate cyclase activity and a 40% decrease in the phosphorylation level of Gi2alpha protein in the tissues, resulting in an increase in pertussis toxin (IAP)-catalyzed ADP-ribosylation of the protein. An enhancement of cholera toxin-catalyzed ADP-ribosylation of Gs protein was observed only during the first incubation with histamine. 4. This treatment triggered a 30% decrease and a 60% increase in the histamine-stimulated activities of protein kinase A and protein phosphatase 2A in the tissues, respectively. 5. Pretreatment with okadaic acid completely blocked the histamine-induced decrease in amylase secretion and increase in IAP-catalyzed ADP-ribosylation of Gi protein. The levels of Gi2alpha and Gs alpha proteins in the tissues were not modified by histamine treatment and the level of Gi2alpha protein was not affected by pretreatment with okadaic acid, as assessed by immunoblot analyses with anti-Gi2alpha and anti-Gs alpha protein antiserum. 6. The regulation of Gi2alpha protein phosphorylation in parotid tissues plays an important role in the histamine-induced desensitization of amylase secretion.  相似文献   

6.
Immunoreactive-adrenomedullin concentrations and the expression of adrenomedullin mRNA were studied in the tumor tissues of adrenocortical tumors. Northern blot analysis showed the expression of adrenomedullin mRNA in tumor tissues of adrenocortical tumors, including aldosterone-producing adenomas, cortisol-producing adenomas, a non-functioning adenoma and adrenocortical carcinomas, as well as normal parts of adrenal glands and pheochromocytomas. On the other hand, immunoreactive-adrenomedullin was not detected in about 90% cases of adrenocortical tumors (<0.12 pmol/g wet weight (ww)). Immunoreactive-adrenomedullin concentrations ranged from 0.44 to 198.2 pmol/g ww in tumor tissues of pheochromocytomas and were 9.2 +/- 1.2 pmol/g ww (mean +/- SD, n = 4) in normal parts of adrenal glands. Adrenomedullin mRNA was expressed in an adrenocortical adenocarcinoma cell line, SW-13 and immunoreactive-adrenomedullin was detected in the culture medium of SW-13 (48.9 +/- 1.8 fmol/10(5) cells/24h, mean +/- SEM, n = 4). On the other hand, immunoreactive-adrenomedullin was not detectable in the extract of SW-13 cells (<0.09 fmol/10(5) cells), suggesting that adrenomedullin was actively secreted from SW-13 cells without long-term storage. These findings indicate that adrenomedullin is produced and secreted, not only by pheochromocytomas, but also by adrenocortical tumors. Undetectable or low levels of immunoreactive-adrenomedullin in the tumor tissues of adrenocortical tumors may be due to very rapid secretion of this peptide soon after the translation from these tumors.  相似文献   

7.
8.
A recent study by Hokin-Neaverson, M., Sadeghian, K., Majumder, A.L., and Eisenberg, F. (1975) Biochem. Biophys. Res. Commun. 67, 1537-1544, demonstrates that free myo-inositol in the pancreas is significantly increased during intense cholinergic stimulation of secretion. Incubation of rat pancreatic tissue in medium with 100 mM myo-inositol increases 10-fold the endogenous content of free myo-inositol and elicits a prompt and sustained 50% increase in the rate of release of amylase activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that the electrophoretic pattern of the protein mixture released in the presence of 100 mM myo-inositol is the same as that of the secretory output released in the presence of 10 muM carbamylcholine. Microscopic examination of tissue pieces indicates that there is no significant decrease in zymogen granule content of the pancreatic acinar cells during incubation in medium with 100 mM myo-inositol. Jamieson, J.D., and Palade, G.E. (1967) J. Cell Biol. 34, 597-615, have shown that pulse-labeled secretory proteins in guinea pig pancreas first appear in zymogen granules 1 hour postpulse, becoming maximally accumulated in these storage sites by 2 hours postpulse. myo-Inositol (100 mM) stimulates release of pulse-labeled secretory proteins only if incubation in medium with 100 mM myo-inositol is initiated anytime during the first 80 min postpulse. The findings thus indicate that a high uptake of myo-inositol by rat pancreatic tissue in vitro selectively stimulates the release of just those secretory proteins being packaged in newly forming zymogen granules.  相似文献   

9.
Some chemotherapeutic agents, as well as TNF and Fas, induce apoptotic cell death in tumor cells, but the cellular components involved in the process have not yet been identified. Interleukin 1 beta converting enzyme (ICE) is a mammalian homolog of CED-3, a protein required for programmed cell death in nematode Caenorhabditis elegans. We found that a selective inhibitor of ICE/ced 3 family proteases, benzyloxycarbonyl Asp CH2OC(O) 2 6,-dichlorobenzene (Z-Asp-CH2-DCB). completely blocked the apoptotic cell death of human leukemia cells caused by etoposide, camptothecin, 1-beta-D-arabinofuranosyl cytosine (Ara-C) and adriamycin. Moreover, in antitumor agent-treated U937 cells, an ICE-like (CPP32-like) protease was strongly activated. These results indicate that ICE/ ced 3 family proteases are involved in antitumor agent-induced apoptosis. Activation of ICE family proteases plays a key role in apoptosis. However, the subsequent mechanisms resulting in apoptosis are largely unknown. We identified actin as a substrate of ICE family proteases. Cleavage of actin and other substrate proteins by ICE family proteases could be critical in the ongoing process of antitumor agent-induced apoptosis in tumor cells.  相似文献   

10.
11.
Neuropeptide Y (NPY) has been shown to modulate blood pressure, heart rate and to inhibit the baroreceptor reflex at the level of nucleus tractus solitarius (NTS). The aim of this study was to examine effects of NPY and its related peptides on forskolin (1 microM)-stimulated cyclic AMP production in slices of the rat NTS. Each peptide was present at 0.3 microM. Pretreatment with NPY inhibited the stimulated increase in cyclic AMP levels in slices of rat NTS. Also [Pro34]NPY, an analog, which activates Y1, Y3 (and Y5) receptors inhibited the stimulated increase in cyclic AMP levels. However, pretreatment with the Y1 receptor-selective antagonist BIBP3226 (3 microM) did not affect the [Pro34]NPY-evoked inhibition of cyclic AMP levels. In addition, [Leu31,Pro34]NPY, an Y1 (and PP1/Y4 and Y5) receptor agonist did not inhibit the stimulated increase in cyclic AMP production. Also the Y2 receptor-selective agonist C2-NPY inhibited the stimulated elevation of cyclic AMP levels, while peptide YY, which does not recognize Y3 receptors did not significantly affect the stimulated cyclic AMP production. In conclusion, it seems that Y2 and Y3 receptors are coupled to inhibition of adenylate cyclase activity in the rat NTS.  相似文献   

12.
The response of amylase and chymotrypsinogen to a pancreatic secretory stimulation (intragastric administration of oleic acid or sodium oleate) are compared in rats. This comparison concerned the rates of biosynthesis of the two enzymes, their intrapancreatic levels of storage and their rates of excretion in the juice. In each of these 3 steps, it was found that the stimulation induced non-parallel courses of amylase and chymotrypsinogen. The non-parallelism in the rates of biosynthesis was found unable to explain the entire non-parallelism observed in the rates of excretion. These results suggest that the mechanism which controls the proportions of the different enzymes in the juice is different from that which monitors the rates of individual enzymes biosynthesis.  相似文献   

13.
The effects of vinblastine and colchicine on pancreatic acinar cells were studied by use of in vitro mouse pancreatic fragments. Vinblastine inhibited the release of amylase stimulated by bethanechol, caerulein, or ionophore A23187. Inhibition required preincubation with vinblastine,and maximum inhibition was observed after 90 min. Inhibition was relatively irreversible and could not be overcome by a high concentration of stimulant. Inhibition could also be produced by colchicine although longer preincubation was required and inhibition was only partial. Uptake of [3H]vinblastine and [3H]colchicine by pancreatic fragments was measured and found not to be responsible for the slow onset of inhibition by these drugs. In incubated pancreas, microtubules were present primarily in the apical pole of the cell and in association with the Golgi region. Vinblastine, under time and dose conditions that inhibited the release of stimulated amylase, also reduced the number of microtubules. The only other consistent structural effects of vinblastine were the presence of vinblastine-induced crystals and an increased incidence of autophagy. The remainder of cell structure was not affected nor were overall tissue ATP and electrolyte contents or the stimulant-induced increase in 45Ca++ efflux. It is concluded that the antisecretory effects of vinblastine and colchicine are consistent with a microtubular action, but that acinar cell microtubules are more resistant to the drugs than many other cell types.  相似文献   

14.
The heterotrimeric G-protein Gq/11 was identified on pancreatic acinar zymogen granules and its function in calcium-regulated exocytosis was examined. Western blotting showed alphaq/11, but not alphas or alphao, to be localized to the zymogen granule membrane along with G-protein beta-subunit; all three alpha subunits were present in a plasma membrane fraction and the alphaq/11 signal was 30-fold more enriched in the plasma membrane as compared with granule membrane. Neither CCK receptors nor alpha subunits of the sodium pump, both plasma membrane markers were present on granule membranes. Immunohistochemistry of pancreatic lobules showed that alphaq/11 localized to the zymogen granule-rich apical region of acinar cells together with a much stronger signal at the basolateral plasma membrane. When the substance-P-related peptide GPAnt-2a, an antagonist of Gq/11, was introduced into streptolysin-O permeabilized acini to bypass the plasma membrane, the amylase release induced by 10 microM free calcium was potentiated in a concentration-dependent manner. By contrast, another substance-P-related peptide, GPAnt-1, an antagonist of Go and Gi, showed no effect on calcium-induced amylase release from permeabilized acini. GPAnt-2a peptide also exerted an inhibitory effect on the total GTPase activity of the purified zymogen granules and a larger inhibitory effect on the GTPase activity of the Gq/11 protein immunopurified from zymogen granules. GPAnt-1, however, did not inhibit GTPase activity of either zymogen granules or immunopurified Gq/11. These results suggest that GPAnt-2a peptide augmented calcium-induced amylase release from permeabilized acini by inhibiting GTPase activity of the Gq/11 protein on zymogen granules. We conclude that Gq/11 protein on zymogen granules plays a tonic inhibitory role in calcium-regulated amylase secretion from pancreatic acini.  相似文献   

15.
We have considered a differential diagnosis of clinical hyperkalemia. The clinical signs and symptoms of patients with hyperkalemia are manifold and can involve many organ systems. The nonoliguric chronic renal failure patient with hyporeninemia and hypoaldosteronemia may have as one of his principal problems recurrent hyperkalemia. Treatment of this condition includes well-known modalities such as administration of calcium salts, NaHCO3, removal of potassium with resin or dialysis as well as placement of a transvenous pacemaker in anticipation of bradyarrhythmias or asystole.  相似文献   

16.
To determine whether ethanol inhibits nocturnal melatonin (MT) secretion, three experiments (A, B, and C) were performed in seven normal subjects. In A, ethanol at a dose of 0.34 g/kg was administered orally at 6:00, 8:00, and 10:00 PM. Each dose was increased to 0.52 g/kg in B. In C, water was substituted for ethanol. Blood samples for determination of serum MT levels were drawn every second hour between 6:00 PM and 8:00 AM. Urinary excretion of MT during the night was also determined. In A, serum ethanol reached a maximal level of 13 +/- 1 mmol/L at 12 midnight. In B, the corresponding maximum was 25 +/- 1 mmol/L. The higher alcohol dose inhibited nocturnal MT secretion by 20% +/- 5% (P < .01), whereas the lower dose lacked such effect. Urinary excretion of MT was left unaffected by alcohol at both doses. Five additional normal subjects were given alcohol as described above at a dose of 0.52 g/kg (experiment D). This induced mild nocturnal hypoglycemia as evidenced by a glucose decremental area (5.9 +/- 1.8 mmol/L.h) that differed significantly from zero (P < .05). To determine whether a reduced glucose delivery to pinealocytes might contribute to the decreased MT secretion in alcohol-intoxicated subjects, two experiments (E and F) were performed in eight healthy individuals. In E, ethanol was given orally as in B; three small oral doses of glucose were also given at 8:00 PM, 10:00 PM, and 12 midnight. In F, water was substituted for ethanol and glucose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In conscious chronic gastric and pancreatic fistula dogs (Thomas cannula), secretin was perfused for three hours with a submaximal (GIH, 1.0 C.U./kg.) and a maximal dose (GIH, 8.0 c.u./kg.), according to the following schedule: 1. First hour submaximal stimulus; 2. second hour maximal stimulus; 3. third hour submaximal stimulus. The alkaline and protein components of pancreatic secretion were analyzed in 20-minute sample collections thoughout the three hours. The same protocol was followed in anesthetized dogs subjected to a mind line laparotomy. A biopsy of the pancreatic gland was taken before (control) and at the end of each perfused dose. The secretion showed a significant increase of protein concentration and output when passing from the maximal to the last submaximal secretin perfusion dose. These findings correlated well with the piling up of zymogen and prozymogen granules in the apical zone of the acinar cells during maximal secretin perfusion, with their subsequent discharge into the acinar lumen upon abrupt reversal to the initial secretin submaximal dose. The study confirms that secretin influences pancreatic protein secretion and indicates in addition, that pharmacologic doses of the hormone, have the capacity to block acinar cell zymogen granule release.  相似文献   

18.
Neuropeptide Y (NPY) has been shown to inhibit insulin secretion from the islets of Langerhans. We show that insulin secretion in the insulinoma cell line RIN 5AH is inhibited by NPY. 125I-Peptide YY (PYY) saturation and competition-binding studies using NPY fragments and analogues on membranes prepared from this cell line show the presence of a single class of NPY receptor with a Y1 receptor subtype-like profile. Inhibition of insulin secretion in this cell line by NPY fragments and analogues also shows a Y1 receptor-like profile. Both receptor binding and inhibition of insulin secretion showed the same orders of potency with NPY > [Pro34]-NPY > NPY 3-36 > NPY 13-36. The Y1 receptor antagonist, BIBP 3226, blocks NPY inhibition of insulin secretion from, and inhibits 125I-PYY binding to, RIN 5AH cells. Northern blot analysis using a Y1-receptor specific probe shows that NPY Y1 receptors are expressed by RIN 5AH cells. Y5 receptors are not expressed in this cell line. Neuropeptide Y inhibition of insulin secretion is blocked by incubation with pertussis toxin, implying that the effect is via a G-protein (Gi or Go) coupled receptor. Neuropeptide Y inhibits the activation of adenylyl cyclase by isoprenaline in RIN 5AH cell lysates, and the stimulation of cAMP by glucagon-like peptide-1 (7-36) amide (GLP-1). It also blocks insulin secretion stimulated by GLP-1, but not by dibutyryl cyclic AMP. Hence, we suggest that NPY inhibits insulin secretion from RIN 5AH cells via a Y1 receptor linked through Gi to the inhibition of adenylyl cyclase.  相似文献   

19.
The permeability of these junctions from the interstitium to the lumen was examined by using an ultrastructural tracer, microperoxidase, in conjunction with electron microscopy. In the resting gland, the reaction product of microperoxidase was seen in the interstitial and intercellular spaces, but not within acinar lumina; thus the tight junction was impermeable to microperoxidase (junction closed). Intraductal injection of hypertonic sucrose solution (1000 mOsm; 30 microliters) caused a sustained elevation of the luminal pressure, indicating osmotic water flow into the lumen due to the presence of a hypertonic solution. In this gland no opening of the tight junctions was observed. In the chorda-stimulated gland, microperoxidase entered the lumen through the tight junctions, that is, they became permeable to microperoxidase (junction open). These findings suggest that chorda stimulation opens the acinar tight junctions and that the paracellular secretory pathway may be involved in the secretion of small molecules and water from the submandibular acini.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号