首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The facility is intended for measuring the impedance of electrochemical systems by the pulse method. The impedance spectrum is calculated by applying the Fourier transform to the step response (variation in the potential due to sample polarization by a step current pulse). The facility is controlled by a computer and contains a programmable galvanizer and 8-bit parallel ADC with a buffer RAM. Measurements are performed by the two-or three-electrode method over a frequency band of 10−3 to 3×105 Hz with samples whose tan (δ) is within 0.01–100. The measurement error is 2%.  相似文献   

2.
This study discusses a non-contact optical technique (electronic speckle pattern interferometry) that is well suited for thermal deformation measurement without any surface preparation and compensating process. Fiber reinforced plastics ([0]16, [0/90]8S) were analyzed by ESPI to determine their thermal expansion coefficients. The thermal expansion coefficient of the transverse direction of a uniaxial composite is evaluated as 48.78×10−6(1/°C). Also, the thermal expansion coefficient of the cross-ply laminate [0/90]8S is numerically estimated as 3.23×10−6 (1/°C) that is compared with that measured by ESPI.  相似文献   

3.
The self-lubricating composites Ni3Al–BaF2–CaF2–Ag–Cr, which have varying fluoride contents, were fabricated by the powder metallurgy technique. The effect of fluoride content on the mechanical and tribological properties of the composites was investigated. The results showed that an optimal fluoride content and a balance between lubricity and mechanical strength were obtained. The Ni3Al–6.2BaF2–3.8CaF2–12.5Ag–10Cr composite showed the best friction coefficients (0.29–0.38) and wear rates (4.2 × 10−5–2.19 × 10−4 mm3 N−1 m−1) at a wide temperature range (room temperature to 800°C). Fluorides exhibited a good reduced friction performance at 400 and 600°C. However, at 800°C, the formation of BaCrO4 on the worn surface due to the tribo-chemical reaction at high temperatures provided an excellent lubricating property.  相似文献   

4.
The friction and wear properties of phosphor bronze and nanocrystalline nickel coatings were evaluated using a reciprocating ball-on-plates UMT-2MT sliding tester lubricated with ionic liquid and poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate, respectively. The morphologies of the worn surfaces for the phosphor bronze and nanocrystalline nickel coatings were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by means of X-ray photoelectron spectroscopy. Results show that the phosphor bronze and nanocrystalline nickel coatings exhibited quite different tribological behaviors under different lubricants. Phosphor bronze plate shows higher friction coefficient (0.14) and wear rate (3.2 × 10−5 mm3/Nm) than nanocrystalline nickel coatings (average friction coefficient is 0.097, wear rate is 1.75 × 10−6 mm3/Nm) under poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate lubricated conditions. The excellent tribological performance of nanocrystalline nickel coatings under above lubricant can be attributed to the formation of MoS2 and MoO3 on the sliding surface. a quite a number of C, O and F products on worn surface of phosphor bronze than NC nickel coatings can improve anti-wear properties while using ionic liquid as lubricant.  相似文献   

5.
A version of the stroboholographic interferometry method with a photothermoplastic recording medium is described. Its distinguishing feature is the use of a repetitively operating monopulsed laser as an illumination source. The performance characteristics of the developed highly coherent frequency-doubled Nd:YAlO3 laser with combined modulation of the cavityQ-factor by an acoustooptical shutter and a bleachable filter are presented. A system for synchronization of the monopulses with the required phases of the periodical process under study is described. It is shown that, when using the ΦTпH-Л photothermoplastic medium, recording of double-exposure stroboholographic interferograms of diffusely reflecting objects ∼40×90 mm in size is ensured by 10–16 laser pulses at an output energy of ∼4×10−4 J and a repetition rate of no more than 10 Hz. Interferograms of larger objects can be obtained by increasing the pulse energy and the laser firing rate. Deceased.  相似文献   

6.
Fe3Si, Fe3Si alloys containing Cu were fabricated by arc melting followed by hot-pressing. The friction and wear behaviors of Fe3Si based alloys with and without Cu addition against Si3N4 ball in water-lubrication were investigated. The friction coefficient and the wear rates of Fe3Si based alloys decreased as the load increased. The wear rate of Fe3Si was higher than that of AISI 304. The addition of Cu can significantly improve the friction and wear properties of Fe3Si based alloys and substantially reduce the wear rates of Si3N4 ball. The wear rate of Fe3Si–10%Cu was 2.56 × 10−6 mm3 N−1 m−1 at load of 20 N and decreased to 1.64 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear rate of Si3N4 ball against Fe3Si–10%Cu was 1.41 × 10−6 mm3 N−1 m−1, while the wear rate of Si3N4 ball against AISI 304 was 5.20 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear mechanism was dominated by micro-ploughing. The combination of mechanical action (i.e., shear, smear and transference of Cu) and tribochemical reaction of Si3N4 with water was responsible for the improved tribological behavior of Fe3Si alloys containing Cu under high loads.  相似文献   

7.
The literature surveyed revealed that drying kinetics of white mulberry under microwave treatment has not been investigated. In present study, both experimental study and mathematical modeling on microwave drying of white mulberry was performed. The microwave drying process which reduced the moisture content of mulberry from 3.76 to 0.25 (g water/g dry matter) was carried out at 90, 180, 360, 600, and 800 W in a modified microwave drying set-up. The effects of microwave drying technique on the moisture ratio and drying rate of white mulberry were investigated experimentally. Both the effects of microwave power level (under the range of 90–800W) and initial sample weight (50–150g) were studied. No constant rate period was observed. Mathematical modeling of thin layer drying kinetics of white mulberry under microwave treatment was also investigated by fitting the experimental drying data to eight thin layer drying models. Among the models proposed, Midilli et al. model precisely represented the microwave drying behavior of white mulberry with the coefficient of determination higher than 0.999 and mean square of deviation (χ2) and root mean square error (RMSE) lower than 1.1×10−4 and 8.9×10−3, respectively for all the microwave drying conditions studied. The effective moisture diffusivity (Deff) of white mulberry varied from 0.45×10−8 to 3.25×10−8 m2s−1. Both the drying constant (k) and Deff increased with the increase of microwave power level.  相似文献   

8.
An AZ31 magnesium alloy was tested at constant temperatures ranging from 423 to 473 K (0.46 to 0.51T m ) under constant stresses. All of the creep curves exhibited two types depending on stress levels. At low stress (σ/G<4×10−3), the creep curve was typical of class A (Alloy type) behavior. However, at high stresses (σ/G>4×10−3), the creep curve was typical of class M (Metal type) behavior. At low stress level, the stress exponent for the steady-state creep rate was of 3.5 and the true activation energy for creep was 101 kJ/mole which is close to that for solute diffusion. It indicates that the dominant deformation mechanism was glide-controlled dislocation creep. At low stress level wheren=3.5, the present results are in good agreement with the prediction of Fridel model.  相似文献   

9.
Cutler  J.N.  Sanders  J.H.  Fultz  G.W.  Eapen  K.C. 《Tribology Letters》1998,5(4):293-296
Fultz et al. have reported that the thermo‐oxidative properties of linear PFPAEs can be improved by stressing the fluid at elevated temperature (371°C) in the presence of air. A study of M‐50 steel coupons exposed to unstressed and stressed linear PFPAE fluids at 260 °C and 330 °C each reveal complex surface layers. For the coupon exposed to the unstressed fluid at 260 °C, a subsurface layer is observed between the iron oxide and iron substrate that has been characterized as being composed of FeF2. In contrast, the coupon exposed to the stressed fluid has a marked increase in the iron oxide thickness ∼2–3 times) when compared to the unstressed sample and shows no evidence of a buried fluorine‐containing layer. An increase in temperature (330 °C) in the stressed fluid O–C test was required to form a subsurface FeF2 layer. It is proposed that the elimination of the fluorine layer found on the M‐50 substrate increases the upper temperature limit found from the oxidation–corrosion studies. The increase in the oxide layer thickness implies that the FeF2 layer found in the unstressed sample acts like a diffusion barrier which inhibits the outward movement of Fe0 and the decreased rate of iron oxide growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The operation of multichannel wire gas electron multipliers (MWGEMs) with gaps between electrodes δ = 1 and 3 mm, when the chamber is filled with commercial neon under a 0.4- and 1.0-atm (abs.) pressure and irradiated with α and β particles, is studied. The following maximal proportional electron multiplication coefficients are obtained: 6 × 103 (α, irradiation, δ = 3 mm, 1 atm, and 20% streamers), 1.2 × 104, 3 mm, 1 atm, and 50% streamers), 6 × 103 (α, 3 mm, 0.4 atm, and 20% streamers), and 105, 3 mm, 0.4 atm, and 50% streamers). The maximal proportional electron multiplication coefficients are obtained in the MWGEM and its anode (induction) gap in the sequential electron multiplication mode: 1.08 × 105, 1 mm, 0.4 atm, 50% streamers), 2 × 106, 3 mm, 0.4 atm, 20% streamers), and 1.12 × 105 (α, 3 mm, 0.4 atm, 50% streamers).  相似文献   

11.
Low friction and low wear of SiC sliding against itself in water at room temperature have been well reported in the past 20 years, and some practical applications have been developed. However, the properties of friction and wear in pure, deionized or distilled water have been mainly observed and not in water from sources in nature. In this article, the fundamental properties of friction and wear between SiC ball and disk are observed in water from ground, river, and sea, and the results are compared with those in deionized water in the viewpoints of modes of lubrication and wear and the resultant values of friction coefficient and wear rate. The smallest friction coefficient (μ = 0.005) in steady state is observed in deionized water and the largest (μ = 0.013) in sea water. The smallest wear rate (w s = 2.2 × 10−7 mm3/Nm) is observed in sea water and the largest (w s = 3.1 × 10−7 mm3/Nm) in deionized water. The intermediate values of μ and w s between the smallest and the largest ones are observed in ground and river water. The modes of lubrication and wear, which generated observed values of μ and w s, are considered as mixed lubrication and tribochemical wear. The chemical elements of Na, Cl, Mg, and K in sea water observed on wear particles and pits are thought effective to generate the largest value of μ and the smallest value of w s.  相似文献   

12.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

13.
Woydt  Mathias 《Tribology Letters》2000,8(2-3):117-130
The results presented in this paper have clarified experimentally, that titania-based Magnéli-phases (Ti4O7/Ti5O9 and Ti6O11) with (121)-shear planes exhibit more anti-wear properties than lubricious (low-frictional) properties. The results for dry sliding indicate that the coefficients of friction lie in the range of 0.1–0.6 depending on sliding speed and ambient temperature. The COF decreased with increasing temperature (T= 22–800°C) and increasing sliding speed (υ= 1−6 m/s). The dry sliding wear rate was lowest for the Al2O3 at 1 m/s at 800°C with values of 1.7 × 10−8 and 6.4 × 10−8 mm3/N m, comparable to boundary/mixed lubrication, associated with a high dry frictional power loss of 30 W/mm2. The running-in wear length and, more important, the wear rate decreased under oscillating sliding tests with increasing relative humidity. The contact pressure for high-/low-wear transition increased under oscillating sliding tests with increasing relative humidity. At room temperature and a relative humidity of 100% the steady-state wear rate under dry oscillating sliding for the couple Al2O3/Ti4O7–Ti5O9 was lower than 2 × 10−7 mm3/N m and therefore inferior to the resolution of the continuous wear measurement sensor. TEM of wear tracks from oscillating sliding revealed at room temperature a work-hardening as mechanism to explain the running-in behavior and the high wear resistance. The hydroxylation of titania surfaces favours the high-/low-wear transition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Spada  F.E.  Basov  D. 《Tribology Letters》2000,8(2-3):179-186
Reflection–absorption Fourier transform infrared (FTIR) techniques were used to monitor thin layers of hydroxyl-terminated perfluoropolyether lubricant (Fomblin ZDOL) for molecular changes caused by long exposures to dc electric fields with intensities in the range 3–6 × 104 V/cm. A new absorption band appears in the 1720–1640 cm−1 region of some field-exposed specimens. The new spectral feature is attributed to the presence of C=O, a functional group not present in the ZDOL chemical structure but commonly found in perfluoropolyether degradation products. The peak position of the carbonyl absorption band indicates that hydrogenated carbon is present at the α-position. The presence of hydrogenated --carbons suggests that structural modifications occur via a mechanism that primarily involves the –CH2–OH functional endgroup, rather than the more commonly proposed bond cleavage at the –O–CF2–O– acetal groups in perfluoropolyether lubricants having no polar endgroups. These results suggest that slow but cumulative lubricant degradation may occur when strong electric fields are present at the head-disk interface. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
An excimer radiation source with transverse volume discharge pumping that operates simultaneously on a set of bands of 258 nm (Cl 2 * ) and 175 nm (ArCl) is described. A spark UV preionization was used for the perionization of a discharge volume of 18×2.2.×1.0 cm3. The discharge was initiated in the mixtures Ar/Cl2=(5–30)/(0.1–0.8) kPa. The source was optimized over the composition and pressure of the Ar/Cl2 mixture. The service life of the excimer source on the electron-vibrational transitions Cl 2 * and ArCl in the gas-static regime with a passive volume of 101 was of the order of 104 pulses.  相似文献   

16.
A high-temperature self-lubricating composite NiAl–Cr–Mo–CaF2 was fabricated using the powder metallurgy technique, and the tribological behavior of the composite at a wide range of temperatures (room temperature to 1000 °C) was investigated. The results showed that the composite had a favorable friction coefficient of about 0.2 and an excellent wear resistance of about 1 × 10−5 mm3N−1m−1 at the high temperatures tested (800 and 1000 °C). The excellent self-lubricating performance was attributed to the formation of the glaze film on the worn surface consisting mainly of CaCrO4 and CaMoO4 as high-temperature solid lubricants.  相似文献   

17.
The wear of engine valve and seat insert is one of the most important factors which affect engine performance. Because of higher demands on performance and the increasing use of alternative fuel, engine valve and seat insert are challenged with greater wear problems than in the past. In order to solve the above problems, a simulator was developed to be able to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focuses on the different degrees of wear at three different singular test speeds (10 Hz, 25 Hz & multi-Hz). For this study, the temperature of the outer surface of the seat insert was controlled at 350°C, and the test load was 1960 N. The test cycle number was 6.0×106. The mean (±standard error) wear depth of the valve at 10 Hz and 25 Hz was 45.1 (±3.7)μm and 81.7 (±2.5)μm, respectively. The mean wear depth of the seat insert at 10 Hz and 25 Hz was 52.7 (±3.9) μm and 91.2 (±2.7) μm, respectively. In the case of multi-Hz it was 70.7 (±2.4)/on and 77.4 (±3.8) μm, respectively. It was found that higher speed (25 Hz) cause a greater degree of wear than lower speed (10 Hz) under identical test condition (temperature, valve displacement, cycle number and test load). In the wear mechanisms of valves, adhesive wear, shear strain and abrasive wear could be observed. Also, in the wear mechanisms of seat inserts, adhesive wear, surface fatigue wear and abrasive wear could be observed.  相似文献   

18.
Abstract

Complex adsorption waves of Cu(II), Pb(II), Cd(II), Ni(II), Co(II), and Zn(II) in substrate solution (pH=9.26) of diacetyldioxime‐ammonia‐ammonium chloride‐sodium citrate‐gelatin‐sodium sulfite were studied and a new method for determination of the six trace elements in aqueous solutions was developed. The results show that there are sensitive adsorption waves of Cu(II), Pb(II), Cd(II), Ni(II), Co(II), and Zn(II) complexes at about ?0.45, ?0.61,?0.78, ?1.07, ?1.23, and ?1.38 V, respectively. The method is easy to operate and is able to determine these trace elements in aqueous solutions rapidly and simultaneously. When the signal‐to‐noise ratio equals 3, the detection limits of copper, lead, cadmium, nickel, cobalt, and zinc are 3.2×10?4, 4.8×10?3, 1.9×10?3, 1.7×10?5, 2.1×10?6, and 1.0×10?3 µg/cm3. Good linear relationships exist between the concentrations and the current peaks when copper, lead, cadmium, nickel, cobalt, and zinc concentrations are within 6.5×10?4~100, 9.3×10?3~10, 4.1×10?3~10, 3.2×10?5~10?1, 4.0×10?6~10?2, and 2.1×10?3~10 µg/cm3, respectively. In conjunction with a microwave assimilation technique, the method has been used in the rapid and simultaneous determination of these trace elements in some plant medicines with satisfactory results.  相似文献   

19.
The Ni3Al matrix composites with addition of 10, 15, and 20 wt% BaMoO4 were fabricated by powder metallurgy technique, and the tribological behaviors were studied from room temperature to 800 °C. It was found that BaAl2O4 formed during the fabrication process. The Ni3Al composites showed poor tribological property below 400 °C, with high friction coefficients (above 0.6) and wear rates (above 10−4 mm3/Nm). However, the composites exhibited excellent self-lubricating and anti-wear properties at higher temperatures, and the composite with addition of 15 wt% BaMoO4 had the lowest wear rate (1.10 × 10−5 mm3/Nm) and friction coefficient (0.26). In addition, the results also indicated that BaAl2O4 for the Ni3Al composites did not exhibit lubricating property from room temperature to 800 °C.  相似文献   

20.
A method for analyzing a substance has been experimentally tested. The method combines the field-asymmetric ion mobility spectrometry and laser ionization of molecules under atmospheric pressure. Pulsed radiation of the fourth harmonic of an YAG: Nd3+ laser (λ = 266 nm) and a spectrometer with a cylindrical analysis camera were used. The results of detecting nitrocompounds—trinitrotoluene, cyclotrimethylenetrinitramine (hexogen, RDX), etc.—are presented. The experimental detection limits of the spectrometer are 5 × 10−15 g/cm3 (cyclotrimethylenetrinitramine) and ≤3 × 10−15 g/cm3 (trinitrotoluene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号