首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
An anode-supported tubular solid oxide fuel cell (SOFC) with a 15-μm thick YSZ electrolyte and an active area of 100 cm2 was successfully fabricated by co-firing process, and the cell performance was measured under both atmospheric and pressurized conditions. The experimental results showed that the cell performance was significantly improved under the pressurized condition. When the pressure was increased from 1 to 6 atm, the maximum power density increased from 135.0 to 159.0 mW cm−2 at 650 °C, and from 266.7 to 306.0 mW cm−2 at 800 °C. The maximum power density at 800 °C and 4 atm was decreased from 334.8 to 273.9 mW cm−2 when increasing the fuel utilization from 10% to 90%. Under the test condition of 70% fuel utilization, 800 °C and 4 atm, the cell could run stably at 0.7 V and 350 mA cm−2 for 50 h, almost without any performance loss.  相似文献   

2.
Yttria (8 mol%) stabilized zirconia (8YSZ) photocurable slurry is the basis for stereolithography-based 3D (SLA) printed structured electrolyte support for monolithic solid oxide fuel cell (SOFC) stack. The curing resin with trifunctional trimethylolpropane triacrylate and 1,6-hexanediol diacrylate (TMPTA/HDDA) mass ratio of 1.5:8.5 and 1 wt% of photoinitiator provided excellent curing performance and low viscosity of 2.1 mPa·s. Stable 8YSZ photocurable slurry possessing high solid content of 43 vol% and low viscosity of 3.6 Pa·s at 30 s?1 shear rate were obtained, without particle sedimentation after 180-day stability test. The activation energy of 8YSZ fabricated by 3D printing method was 0.87 eV, similar to that by dry-pressing method. The 3D printed monolithic 3-tube SOFC stack exhibited a peak power density of 230 mW·cm?2 at 850 °C. This research proves the great potential of 3D printing technology to prepare monolithic SOFC stack, paving the way to develop SOFCs for practical applications.  相似文献   

3.
In this paper, a model for a solid oxide fuel cell (SOFC) system for decentralized electricity production is developed and studied. The proposed system, operated on natural gas, consists of a planar anode supported fuel cell section and a balance of plant (BoP) which includes gases supply, a fuel processor, a heat management system, an after-burner and a power conditioning system. A reference case is defined and evaluated taking into account the state of the art of the technology and the related technical constrains. Electrical and thermal efficiency of the system, for non-reference conditions are evaluated. In particular, the effect of the deviation from the reference conditions of fuel utilization, gas temperature spring in fuel cell stack, anode off-gas recirculation rate, air inlet temperature and external pre-reforming reaction extent is analyzed. The present study revealed to be a powerful tool for evaluating the SOFC system performance under a wide range of operation and paves the way for defining control strategies in order to maintain high system efficiency under part-load operations.  相似文献   

4.
A simulation of a membrane reactor for the water gas shift reaction is carried out by means of a 1D pseudo‐homogeneous nonisothermal mathematical model. The composite membrane consists of a dense layer of Pd (selective to H2) supported over a porous ceramic layer. The effect of temperature, overall heat‐transfer coefficient, and mode of operation on the membrane reactor performance and stability are analyzed, and the results obtained are compared with those corresponding to a reactor with no hydrogen permeation. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

5.
This work is aimed at understanding the reaction mechanism of propane internal reforming in the solid oxide fuel cell (SOFC). This mechanism is important for the design and operation of SOFC internal processing of hydrocarbons. An anode-supported SOFC unit with Ni-YSZ anode operating at 800 °C was tested with direct feeding of 5% propane. CO2 reforming of propane was carried out in a reactor with Ni-YSZ catalyst to simulate internal propane processing in SOFC. The performance of this direct propane SOFC is stable. The C specie formed over the anode functional layer of SOFC can be completely removed. The major gas products of SOFC are H2, CO, CH4, C2H4 and CO2. Pseudo-steady-state internal processing of propane in the anode catalytic layer of SOFC is associated with a CO2/C3H8 molar ratio of about 1.26 and basically CO2 reforming of propane. CO2 dissociation to produce the O species to oxidize the C species from dehydrogenation and dissociation of propane and its fragments should be the major reaction during CO2 reforming of propane.  相似文献   

6.
A model predicting the temperature field in the porous reforming anode of a solid oxide fuel cell is presented herein. The model is based on mass, momentum, and heat balances of a chemically reacting mixture of gases within the porous matrix of the anode. The important novel characteristic of the model is the consideration of the both internal reforming and electrochemical reactions in the bulk of the porous anode. The electronic and ionic currents in the anodes are calculated utilizing the solution of the Poisson equations for the electric potentials in the porous medium. The transfer current density is described by the Butler–Volmer equation.The model is applied to investigate the temperature field and the reactive flow in button-shaped fuel cells with uniform and graded (multi-layer) anodes composed of Ni and YSZ particles with methane/water vapor mixture used as the fuel. The maximum temperature difference between the hot and cold spots of the anodes is found to reach up to 200 K. The results indicate that the generation of Joule heating caused by the current passing through the anode and the activation losses are the dominating heat sources compared to the gas-water shift and electrochemical reactions.  相似文献   

7.
王永昌  田野 《现代化工》2014,34(10):80-83,85
采用机械混合法合成了Sr2Fe1.5Mo0.5O6(SFM)和Sm0.2Ce0.8O1.9(SDC)质量比为7∶3的SFM/SDC复合材料。用X射线衍射(XRD)、扫描电镜(SEM)、H2-TPR、EIS等表征手段对其进行了表征,并以SFM/SDC|La0.8Sr0.2Ga0.83Mg0.17O3(LSGM)|Ba0.5Sr0.5Co0.8Fe0.2O3(BSCF)为单电池片进行电化学测试,对其性能进行评价。结果表明,复合材料取得了较好的放电性能,即以氢气为燃料气,850、800、750℃时分别取得了630.6、548.4、426 mW/cm2最大功率密度;以甲醇为燃料,850、800、750℃时分别取得了551.6、426.8、335.3 mW/cm2最大功率密度。  相似文献   

8.
Development of solid oxide fuel cell (SOFC) anode with high resistance to coking and sulfur poisoning is highly desirable for the direct application of natural gas in SOFC. Herein, a (Cu, Sm)CeO2 anode with anchored Cu nanoparticles has been prepared. Most of Cu nanoparticles particle size ranges from 20 to 50 nm, which can increase the conductivity and catalytic activity of the anode. The Cu/CSCO10 supported cell exhibits a maximum power density of 404.6 mW/cm2 at 600 °C when dry methane is used as fuel while its ohmic resistance is only 0.39 Ω cm2. The single SOFC shows good stability when H2S content in the fuel is less than 150 ppm. Up to 900 h of continuous stable operation with simulated natural gas and commercial natural gas as fuel prove the advantages and application potential of this anode.  相似文献   

9.
Temperature dependence of electrochemical promotion in C3H6–NO–O2 reaction under stoichiometric conditions was investigated using Me/yttria-stabilized zirconia (YSZ)/Au (Me = Rh, RhPt, Pt) electrochemical catalysts, wherein electrodes were deposited by a sputtering method. Influences of the applied potential, the sintering extent of YSZ substrate, and the precious metal used for the electrode were investigated.Based on the analysis of catalytic reaction and electrode surface state, the longer sintering of YSZ substrate induced a positive effect for non-Faradaic electrochemical promotion of C3H6 oxidation by favoring oxygen spillover, and a negative effect for Faradaic electro-reduction of NO due to decrease in electrical conductivity. We postulated that RhPt electrode showed catalytic activity using the synergistic effect of Pt and Rh; however, higher activity than pure Rh electrode was not observed.  相似文献   

10.
The water gas shift (WGS) reaction was studied in a double-chamber high temperature proton conducting cell (HTPC). The proton conductor was a strontia–ceria–ytterbia (SCY) disk of the form: SrCe0.95Yb0.05O3− and the working electrode was a polycrystalline Fe film. The reaction temperature and the inlet partial pressure of CO varied between 823 and 973 K, and between 1.0 and 10.6 kPa, respectively. The inlet partial pressure of steam (PH2O) was kept constant at 2.3 kPa. An increase in the production of H2 was observed upon “pumping” protons away from the catalyst surface. The Faradaic efficiency (Λ) was lower than unity, indicating a sub-Faradaic effect. The highest value of rate enhancement ratio (ρ) was approximately 3.2, at T = 823 K. The proton transport number (PTN) varied between 0.45 and 1.0. An up to 99% of the produced H2 was electrochemically separated from the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号