首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The statistics of structural lifetime under constant load are related to the statistics of structural strength. The safety factors applied to structural strength must ensure failure probability no larger than 10-6, which is beyond the means of direct verification by histogram testing. For perfectly brittle materials, extrapolation from the mean and variance to such a small tail probability is no problem because it is known that the Weibull distribution applies. Unfortunately, this is not possible for quasibrittle materials because the type of cumulative distribution function (cdf) has been shown to vary with structure size and shape. These are materials with inhomogeneities and fracture process zones (FPZ) that are not negligible compared to structural dimensions. A probabilistic theory of strength of quasibrittle structures failing at macro-crack initiation, which can be experimentally verified and calibrated indirectly, has recently been deduced from the rate of jumps of atomic lattice cracks governed by activation energy barriers. This paper extends this nano-mechanics based theory to the distribution of structural lifetime. Based on the cdf of strength and a power law for subcritical crack growth rate, the lifetime cdf of quasibrittle structures under constant loads is derived. The lifetime cdf is shown to depend strongly on the structure size as well as geometry. It is found that, for the creep rupture case, the mean structural lifetime exhibits a very strong size effect, much stronger than the size effect on the mean structure strength. The theory also implies temperature dependence of the lifetime cdf. For various quasibrittle materials, such as industrial ceramics and fiber composites, it is demonstrated that the proposed theory correctly predicts the experimentally observed deviations of lifetime histograms from the Weibull distribution.  相似文献   

2.
Engineering structures such as aircraft, bridges, dams, nuclear containments and ships, as well as computer circuits, chips and MEMS, should be designed for failure probability ???6–10???7 per lifetime. The safety factors required to ensure it are still determined empirically, even though they represent much larger and much more uncertain corrections to deterministic calculations than do the typical errors of modern computer analysis of structures. The empirical approach is sufficient for perfectly brittle and perfectly ductile structures since the cumulative distribution function (cdf) of random strength is known, making it possible to extrapolate to the tail from the mean and variance. However, the empirical approach does not apply to structures consisting of quasibrittle materials, which are brittle materials with inhomogeneities that are not negligible compared to structure size. This paper presents a refined theory on the strength distribution of quasibrittle structures, which is based on the fracture mechanics of nanocracks propagating by activation energy controlled small jumps through the atomic lattice and an analytical model for the multi-scale transition of strength statistics. Based on the power law for creep crack growth rate and the cdf of material strength, the lifetime distribution of quasibrittle structures under constant load is derived. Both the strength and lifetime cdf’s are shown to be size- and geometry-dependent. The theory predicts intricate size effects on both the mean structural strength and lifetime, the latter being much stronger. The theory is shown to match the experimentally observed systematic deviations of strength and lifetime histograms of industrial ceramics from the Weibull distribution.  相似文献   

3.
The paper presents a model that extends the stochastic finite element method to the modelling of transitional energetic–statistical size effect in unnotched quasibrittle structures of positive geometry (i.e. failing at the start of macro‐crack growth), and to the low probability tail of structural strength distribution, important for safe design. For small structures, the model captures the energetic (deterministic) part of size effect and, for large structures, it converges to Weibull statistical size effect required by the weakest‐link model of extreme value statistics. Prediction of the tail of extremely low probability such as one in a million, which needs to be known for safe design, is made feasible by the fact that the form of the cumulative distribution function (cdf) of a quasibrittle structure of any size has been established analytically in previous work. Thus, it is not necessary to turn to sophisticated methods such as importance sampling and it suffices to calibrate only the mean and variance of this cdf. Two kinds of stratified sampling of strength in a finite element code are studied. One is the Latin hypercube sampling of the strength of each element considered as an independent random variable, and the other is the Latin square design in which the strength of each element is sampled from one overall cdf of random material strength. The former is found to give a closer estimate of variance, while the latter gives a cdf with smaller scatter and a better mean for the same number of simulations. For large structures, the number of simulations required to obtain the mean size effect is greatly reduced by adopting the previously proposed method of random property blocks. Each block is assumed to have a homogeneous random material strength, the mean and variance of which are scaled down according to the block size using the weakest‐link model for a finite number of links. To check whether the theoretical cdf is followed at least up to tail beginning at the failure probability of about 0.01, a hybrid of stratified sampling and Monte Carlo simulations in the lowest probability stratum is used. With the present method, the probability distribution of strength of quasibrittle structures of positive geometry can be easily estimated for any structure size. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Low temperature cracking of asphalt pavements is a major distress in cold regions. Accurate assessment of strength of asphalt mixtures at low temperatures is of great importance for ensuring the structural integrity of asphalt pavements. It has been shown that asphalt mixtures behave in a quasibrittle manner at low temperatures and consequently its nominal strength strongly depends on the structure size. The size effect on the strength of asphalt mixtures can be directly measured by testing geometrically similar specimens with a sufficiently large size range. Recent studies have shown in theory that for quasibrittle structures, which fail at the macrocrack initiation from one representative volume element, the mean size effect curve can also be derived from the scaling of strength statistics based on the finite weakest link model. This paper presents a comprehensive experimental investigation on the strength statistics as well as the size effect on the mean strength of asphalt mixtures at ?24 °C. It is shown that the size effect on mean structural strength can be obtained by strength histogram testing on specimens of a single size. The present study also indicates that the three-parameter Weibull distribution is not applicable for asphalt mixtures.  相似文献   

5.
The physical sources of randomness in quasibrittle fracture described by the cohesive crack model are discussed and theoretical arguments for the basic form of the probability distribution are presented. The probability distribution of the size effect on the nominal strength of structures made of heterogeneous quasibrittle materials is derived, under certain simplifying assumptions, from the nonlocal generalization of Weibull theory. Attention is limited to structures of positive geometry failing at the initiation of macroscopic crack growth from a zone of distributed cracking. It is shown that, for small structures, which do not dwarf the fracture process zone (FPZ), the mean size effect is deterministic, agreeing with the energetic size effect theory, which describes the size effect due to stress redistribution and the associated energy release caused by finite size of the FPZ formed before failure. Material randomness governs the statistical distribution of the nominal strength of structure and, for very large structure sizes, also the mean. The large-size and small-size asymptotic properties of size effect are determined, and the reasons for the existence of intermediate asymptotics are pointed out. Asymptotic matching is then used to obtain an approximate closed-form analytical expression for the probability distribution of failure load for any structure size. For large sizes, the probability distribution converges to the Weibull distribution for the weakest link model, and for small sizes, it converges to the Gaussian distribution justified by Daniels' fiber bundle model. Comparisons with experimental data on the size-dependence of the modulus of rupture of concrete and laminates are shown. Monte Carlo simulations with finite elements are the subject of ongoing studies by Pang at Northwestern University to be reported later.  相似文献   

6.
The fiber bundle model is widely used in probabilistic modeling of various phenomena across different engineering fields, from network analysis to earthquake statistics. In structural strength analysis, this model is an essential part of extreme value statistics that governs the left tail of the cumulative probability density function of strength. Based on previous nano-mechanical arguments, the cumulative probability distribution function of strength of each fiber constituting the bundle is assumed to exhibit a power-law left tail. Each fiber (or element) of the bundle is supposed to be subjected to the same relative displacement (parallel coupling). The constitutive equations describing various fibers are assumed to be related by a radial affinity while no restrictions are placed on their particular form. It is demonstrated that, even under these most general assumptions, the power-law left tail is preserved in the bundle and the tail exponent of the bundle is the sum of the exponents of the power-law tails of all the fibers. The results have significant implications for the statistical modeling of strength of quasibrittle structures.  相似文献   

7.
The feasibility of characterizing asphalt mixtures’ rheological and failure properties at low temperatures by means of the Bending Beam Rheometer (BBR) is investigated in this paper. The main issue is the use of thin beams of asphalt mixture in experimental procedures that may not capture the true behavior of the material used to construct an asphalt pavement.For the rheological characterization, three-point bending creep tests are performed on beams of different sizes. The beams are also analyzed using digital image analysis to obtain volumetric fraction, average size distribution, and spatial correlation functions. Based on the experimental results and analyses, it is concluded that representative creep stiffness values of asphalt mixtures can be obtained from testing at least three replicates of the thin (BBR) mixture beams.Failure properties are investigated by performing strength tests using a modified Bending Beam Rheometer (BBR), capable of applying loads at different loading rates. Histogram testing of BBR mixture beams and of larger beams is performed and the failure distribution is analyzed based on the size effect theory for quasibrittle materials. Different Weibull moduli are obtained from the two specimens sizes, which indicates that BBR beams do not capture the representative volume element (RVE) of the material.  相似文献   

8.
Size effect on structural strength of concrete prisms subjected to three-point bending has been studied using the lattice model, which has been extended and now contains a realistic aggregate structure of concrete. The aggregate structure was obtained from CT-scans of real concrete prisms and overlaying the obtained image with a 3-dimensional hcp-lattice. The numerical analyses show that a size effect on structural strength exists for all studied aggregate densities and aggregate shapes. The size effect can be approximated with a Weibull model, where the main parameter, the Weibull modulus, depends on the concrete composition. The crack size distributions have been calculated and show a similar distribution as hypothesized before for fracture in ceramics. The results from the crack size distribution are helping to provide insight into the nature of the fracture process, which seems to differ from that hitherto assumed in cohesive crack models. After a weakening of the material through a multitude of microcracks, at peak load a single large crack propagates while loading continues in the softening regime. The presumed ‘cloud of microcracks’ advancing ahead of the macro-crack tip has not been found. Instead an alternative macroscopic model strategy, referred to as the 4-stage fracture model, is proposed.  相似文献   

9.
In this paper an extension of Weibull theory by the introduction of a statistical length scale is presented. The classical Weibull strength theory is self-similar; a feature that can be illustrated by the fact that the strength dependence on structural size is a power law (a straight line on a double logarithmic graph). Therefore, the theory predicts unlimited strength for extremely small structures. In the paper, it is shown that such a behavior is a direct implication of the assumption that structural elements have independent random strengths. By the introduction of statistical dependence in the form of spatial autocorrelation, the size dependent strength becomes bounded at the small size extreme. The local random strength is phenomenologically modeled as a random field with a certain autocorrelation function. In such a model, the autocorrelation length plays the role of a statistical length scale. The focus is on small failure probabilities and the related probabilistic distributions of the strength of composites. The theoretical part is followed by applications in fiber bundle models, chains of fiber bundle models and the stochastic finite element method in the context of quasibrittle failure.  相似文献   

10.
The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries; however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), mm-fold Weibull, a Grafted Distribution, a Birnbaum–Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions.  相似文献   

11.
《Composites Part A》2007,38(1):174-185
The critical failure volume (CFV) method is proposed. CFV is defined as a finite subvolume in a material with general nonuniform stress distribution, which has the highest probability of failure, i.e. loss of load carrying capacity. The evaluation of the probability of failure of the subvolumes is performed based on the lowest stress and thus provides an estimate of the lower bound of the probability of local failure. An algorithm for identifying this region, based on isostress surface parameterization is proposed. It is shown that in the case of material with strength following Weibull weak link statistics such a volume exists and its location and size are defined both by the stress distribution and the scatter of strength. Moreover the probability of failure predicted by using the CFV method was found to be close to that predicted by using traditional Weibull integral method and coincide with it in the case of uniform stress fields and in the limit of zero scatter of strength. Experiments performed on homogeneous epoxy resin plaques with and without holes showed that the predictions bound the experimentally measured open hole strength. The Weibull parameters used for prediction were obtained from testing only unnotched specimens of different dimensions. The effect of the hole size on tensile strength of heterogeneous materials such as quasi-isotropic carbon–epoxy composite laminates was considered next. Fiber failure was the only failure mechanism taken into account and a strain-based failure criterion was used in the form of a two parameter Weibull distribution. The stacking sequence was selected to minimize the effect of stress redistribution due to subcritical damage. Not unexpectedly an up to 30% underprediction of the strength of the laminates with small (2.54 mm diameter) holes was observed by using classical Weibull integral method as well as Weibull based CFV method. It was explained by examining the size of the CFV, which appeared to be below Rosen’s ineffective length estimate. The CFV method was modified to account for the presence of a limit scaling size of six ineffective lengths, consistent with recent Monte-Carlo simulations by Landis et al. [Landis CM, Beyerlin IJ, McMeeking RM. Micromechanical simulation of the failure of fiber reinforced composites. Mech Phys Solids 2000;48:621–48] and was able to describe the experimentally observed magnitude of the hole size effect on composite tensile strength in the examined range of 2.54–15.24 mm hole diameters.  相似文献   

12.
A theoretical model and experimental data are presented for the strength and lifetime in creep-rupture of unidirectional, carbon fiber/epoxy matrix microcomposites at ambient conditions. The model ‘microcomposites’ consisted of seven parallel carbon fibers (Hercules IM-6) embedded in an epoxy matrix (Dow DER 331 epoxy/No. 26 hardener) and forming an approximately hexagonal array. The results are interpreted by means of the model which involves Weibull distributions for fiber strength, micromechanical stress-redistribution, and power-law, matrix creep around noncatastrophic fiber breaks from which the creep-rupture originates. For the microcomposites, the model yields approximate Weibull strength and lifetime distributions with parameters depending on the various model parameters. Also obtained is a power-law relationship between stress level and lifetime whose exponent depends on the Weibull shape parameter for fiber strength, the creep exponent for the matrix, and the critical cluster size for failed fibers in the microcomposite. The experimental results agree quite well with theoretical predictions though time-dependent debonding appeared to be part of the failure process; this debonding was observed in independent experiments.  相似文献   

13.
Grain crushing plays an important role in the mechanical behavior of granular media, in chemo-hydro-thermo-mechanical couplings, in instabilities related to strain localization such as shear bands and compaction bands, in geophysical and geotechnical processes, in reservoir and petroleum engineering and in many other domains. The strength of brittle particles seems to be quite well described by a two-parameter Weibull distribution. Nevertheless, such a distribution predicts that failure is possible under any level of applied stress. On the contrary a three-parameter Weibull distribution contains a stress threshold under which grain failure is unlikely. Based on existing experiments on crushing of individual grains from various geomaterials and surrogate materials, and on new experiments performed on rock sugar particles, the present paper explores and compares the applicability of a two- versus a three parameter Weibull distribution. It is shown that in most of the cases the three-parameter Weibull distribution better describes the experimental results.  相似文献   

14.
金属-复合材料混合接头广泛存在于航空、船舶及汽车等领域,具有凹槽形貌的共固化金属-复合材料接头可保持复合材料结构的完整性和纤维的连续性。在被连接金属表面设计了±45°凹槽,评估了表面形貌对钢-玻璃纤维增强树脂复合材料(GFRP)接头胶接性能的影响,设计了单搭接拉伸剪切试验,验证胶接接头的剪切性能;在模拟中引入随机Weibull分布,定义内聚单元材料参数,结合矢量化用户材料(Vectorized user material,VUMAT)子程序模拟了接头的渐进失效过程,并建立±45°凹槽结构的代表性体积单元(Representative volume element,RVE)模型,分析了凹槽宽度和深度等参数对胶接接头的性能影响。研究表明,±45°凹槽结构可以显著提高钢-GFRP胶接接头的剪切强度,数值模拟强度和破坏模式与试验吻合;凹槽深度和宽度对结构胶接性能的影响显著,本文可为金属-复合材料接头的设计提供参考。   相似文献   

15.
This paper presents a general size effect equation for the strength of hybrid structures, which are made of two dissimilar quasibrittle materials with a thin and weak bimaterial interface. Depending on the material mismatch and structure geometry, a singular stress field could occur at the bimaterial corner. For structures with strong stress singularities, an energetic size effect is derived based on the equivalent linear elastic fracture mechanics and asymptotic matching. For structures without stress singularities, a finite weakest link model is adopted to derive the size effect. A general scaling equation that bridges the limits of strong and zero stress singularities is formulated by combining the energetic scaling of fracture of the bimaterial corner and the finite weakest link model.  相似文献   

16.
蒋宇洪  杨娜  白凡 《工程力学》2020,37(7):110-124
在普通砖石砌体结构方面的均质化研究已经较为完善,而在构造、材料存在随机性的古建筑砌体结构方面的均质化研究相对欠缺。该文以有限尺度测试窗法为基础,提出了一种选择砌体结构代表性体积单元(RVE单元)的方法,并与试验和传统有限元模拟结果对比,验证了所提方法的可行性。在此基础上,该文进行了藏式古建石砌体结构RVE单元的选择,探讨了RVE单元的尺寸大小和所包含的组元分布对等效模量的影响,并基于所选RVE单元建立了藏式石砌体结构的均质化模型和整体式模型。结果表明:该选择方法适用于周期性和准周期性砌体结构,能选出与完整结构力学性能接近的RVE单元。随着RVE单元尺寸变大,其Voigt、Reuss等效模量会逐渐向完整结构的模量收敛,呈现先快后慢的变化趋势;组元分布的不同会改变等效模量的收敛程度,但在较大尺寸的RVE单元上,组元分布的影响将被体积造成的影响抵消。该文所建均质化模型能代替传统有限元模型进行局部结构的分析,并给出藏式古建石砌体结构的应力分布规律;所建整体模型能代替传统有限元模型,较为精确模拟结构整体的宏观变形。  相似文献   

17.
The paper presents a follow-up study of numerical modeling of complicated interplay of size effects in concrete structures. The major motivation is to identify and study interplay of several scaling lengths stemming from the material, boundary conditions and geometry. Methods of stochastic nonlinear fracture mechanics are used to model the well published results of direct tensile tests of dog-bone specimens with rotating boundary conditions. Firstly, the specimens are modeled using microplane material and also fracture-plastic material laws to show that a portion of the dependence of nominal strength on structural size can be explained deterministically. However, it is clear that more sources of size effect play a part, and we consider two of them. Namely, we model local material strength using an autocorrelated random field attempting to capture a statistical part of the combined size effect, scatter inclusive. In addition, the strength drop noticeable with small specimens which was obtained in the experiments could be explained either by the presence of a weak surface layer of constant thickness (caused e.g. by drying, surface damage, aggregate size limitation at the boundary, or other irregularities) or three dimensional effects incorporated by out-of-plane flexure of specimens. The latter effect is examined by comparison of 2D and 3D models with the same material laws. All three named sources (deterministic-energetic, statistical size effects and the weak layer effect) are believed to be the sources most contributing to the observed strength size effect; the model combining all of them is capable of reproducing the measured data. The computational approach represents a marriage of advanced computational nonlinear fracture mechanics with simulation techniques for random fields representing spatially varying material properties. Using a numerical example, we document how different sources of size effects detrimental to strength can interact and result in relatively complicated quasibrittle failure processes. The presented study documents the well known fact that the experimental determination of material parameters (needed for the rational and safe design of structures) is very complicated for quasibrittle materials such as concrete.  相似文献   

18.
We present a numerical study aimed to define the overall elastic domain of thin polysilicon films subjected to in-plane loadings. Homogenized properties are obtained for digital polycrystalline microstructures, generated in a representative volume element (RVE) through Voronoi tessellations. To locate the elastic limit, three micromechanical sources of dissipation are allowed for: (i) trans-granular cracking, as due to tensile stresses attaining the local strength inside silicon grains; (ii) inter-granular failure, as due to coupled normal-shear tractions attaining a local effective strength along grain boundaries; (iii) trans-granular phase transformation, as due to compressive stresses attaining a critical threshold inside silicon grains.Results of the homogenization procedure show that Rankine-type overall domains are too crude approximations to the polysilicon elastic envelope, since corners arise because of switching among the three dissipative modes allowed for. Outcomes of the analysis allow also to estimate the size of the RVE required to get objective overall polysilicon properties: according to data already available in the literature, it is shown that the RVE has to gather at least a few hundreds of grains.  相似文献   

19.
Considerable progress has been achieved in fractal characterization of the properties of crack surfaces in quasibrittle materials such as concrete, rock, ice, ceramics and composites. Recently, fractality of cracks or microcracks was proposed as the explanation of the observed size effect on the nominal strength of structures. This explanation, though, has rested merely on intuitive analogy and geometric reasoning, and did not take into account the mechanics of crack propagation. In this paper, the energy-based asymptotic analysis of scaling presented in the preceding companion paper in this issue [1] is extended to the effect of fractality on scaling. First, attention is focused on the propagation of fractal crack curves (invasive fractals). The modifications of the scaling law caused by crack fractality are derived, both for quasibrittle failures after large stable crack growth and for failures at the initiation of a fractal crack in the boundary layer near the surface. Second, attention is focused on discrete fractal distribution of microcracks (lacunar fractals), which is shown to lead to an analogy with Weibull's statistical theory of size effect due to material strength randomness. The predictions ensuing from the fractal hypothesis, either invasive or lacunar, disagree with the experimentally confirmed asymptotic characteristics of the size effect in quasibrittle structures. It is also pointed out that considering the crack curve as a self-similar fractal conflicts with kinematics. This can be remedied by considering the crack to be an affine fractal. It is concluded that the fractal characteristics of either the fracture surface or the microcracking at the fracture front cannot have a significant influence on the law of scaling of failure loads, although they can affect the fracture characteristics. Walter P. Murphy, Professor| of This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon–PEEK specimens, with notches slanted so as to lead to a pure kink band (not accompanied by shear or splitting cracks), are conducted. They confirm the possibility of stable growth of long kind bands before the peak load, and reveal the existence of a strong (deterministic, non-statistical) size effect. The bi-logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bažant. The plot exhibits a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics, LEFM). A new derivation of this law by approximate (asymptotically correct) J-integral analysis of the energy release, as well as by the recently proposed nonlocal fracture mechanics, is given. The size effect law is further generalized to notch-free specimens attaining the maximum load after a stable growth of a kink band transmitting a uniform residual stress, and the generalized law is verified by Soutis, Curtis and Fleck's recent compression tests of specimens with holes of different diameters. The nominal strength of specimens failing at the initiation of a kink band from a smooth surface is predicted to also exhibit a (deterministic) size effect if there is a nonzero stress gradient at the surface. A different size effect law is derived for this case by analyzing the stress redistribution. The size effect law for notched specimens permits the fracture energy of the kink band and the length of the fracture process zone at the front of the band to be identified solely from the measurements of maximum loads. The results indicate that the current design practice, which relies on the strength criteria or plasticity and thus inevitably misses the size effect, is acceptable only for small structural parts and, in the interest of safety, should be revised in the case of large structural parts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号