首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metal iodides reduce partially the host coordination polymer of the type $ ^{ 3}_{\infty } \left[ {\left( {{\text{Me}}_{ 3} {\text{Sn}}} \right)_{ 3} {\text{Fe}}\left( {\text{CN}} \right)_{ 6} } \right] $ , I, to give new host–guest supramolecular coordination polymers (SCP). The physical and chemical characteristics of the new products were studied by elemental analyses, X-ray powder diffraction, IR, UV/Vis, and solid state NMR spectra. The host–guest SCP are [Mx(Me3Sn)3Fe(1–x)IIIFe x II (CN)6]n M = Li+·2H2O, 1; Li+, 2; Na+, 3; K+, 4; Cu+, 5, [Li(Me3Sn)3FeII(CN)6]n, 6 and [(LiDEE)0.9(Me3Sn)3Fe o.1 III Fe o.9 II (CN)6]n, 7. The stoichiometry and nature of the guest depend on the type of the metal iodide and the reaction conditions. The polymeric nature of these SCP is due to the presence of trigonal bipyramidal configured structure which bridges between the single d-transition metal ions. The host–guest SCP containing the Li ions have been tested as electrodes to construct four different lithium-ion batteries.  相似文献   

2.
Synthetic hydroxylapatites are prepared with additives, such as Mg2+, CO 3 2? , and C2O 4 2? . An increase in the concentration of magnesium leads to the formation of struvite. In the Ca(NO3)2-(NH4)HPO4-Na2CO3-NH4OH-H2O system, an excess of carbonate ions leads to the formation of calcite. When the synthesis is performed using oxalate ions as additives, calcium oxalate does not form the inherent phase. Calcium oxalate monohydrate is synthesized with additives, such as CO 3 2? , HPO 4 2? , and SO 4 2? ions and urea, glycine, and glutamic acid. X-ray powder diffraction analysis has revealed that the composition of the CaC2O4 · H2O precipitate remains unchanged under these conditions and in the presence of the aforementioned additives.  相似文献   

3.
WO3/TiO2 composite film was prepared by microarc oxidation technique and characterized by SEM, XRD, UV-vis spectra and Zeta-potential. The photocatalytic activity of WO3/TiO2 composite film was evaluated by examining the degradation of methyl orange. The influence of solution pH and inorganic anions on removal ratio of methyl orange was investigated. Removal ratio of methyl orange decreased with an increase of pH value in acidic solution, while it increased with the pH value in alkaline solution. The influence of added anions on the removal ratio is divided into two aspects. Addition of Cl? and SO 4 2? resulted in a decrease in photocatalytic removal ratio of methyl orange, while it was facilitated by PO 4 3? , HCO 3 ? and NO 3 ? .  相似文献   

4.
A single crystal of excessively Pb2+-exchanged zeolite Y (|Pb 15.5 2+ (Pb4O4(Pb 16/19 2+ Pb 3/19 4+ )4)4.75|[Si117Al75O384]-FAU) was prepared by exchange of Na–Y (|Na75|[Si117Al75O384]-FAU, Si/Al = 1.56) with an aqueous stream 0.05 M Pb(C2H3O2)2 at 294 K, followed by vacuum dehydration at 1 × 10?6 Torr and 693 K. Its structure was determined at 100 K, by X-ray diffraction techniques in the cubic space group Fd $ \overline{3} $ 3 ¯ m and was refined to the final error indices R 1/wR 2 = 0.0639/0.1323. About 53.5 Pbn+ ions per unit cell occupy three different equipoints; 26 are at site I′, 19 are at site II, and the remaining 8.5 are at another site II. Three Pb4+ ions at some of the positions must have higher oxidation states due to elevated dehydration temperature; Pb(IIa) is supposed to coexist with Pb2+ and Pb4+ ions assuming the charge balance of the zeolite framework. A distorted Pb4O4 cube, alternating Pb2+ at Pb(I′) and O2? at O(5), coordinates with four Pb2+ and/or Pb4+ ions through its oxygen atoms to give a [Pb 4 2+ O 4 2? (Pb 16/19 2+ Pb 3/19 4+ )4]176/19+ cluster in 4.75 of eight sodalite cavities per unit cell in zeolite Y.  相似文献   

5.
The mass spectrometry study of chalcogenide glasses in the P-S binary system and P-As-S ternary system is used to demonstrate that the composition of the gas phase in binary samples is characterized by the conventional spectra of ions, such as PS 2 + , P2S 7 + , P2S 7 + and P4S 10 + . The introduction of As to the binary glass systems first demonstrated the presence of ions AsPS+, AsPS 4 + , AS2 5 + and As2PS5 + in the gas phase of the ternary chalcogenide system, which correspond to the ternary compositions AsPS4 and As2P2S7 in the solid phase.  相似文献   

6.
Lanthanum(III) and cerium(III) complexes of pyridine-2,6-dicaboxylic acid (H2Pydc) have been prepared and their crystal structures were determined by X-ray crystallography. The single crystal analysis reveals that the lanthanum(III) complex, 1 is polymeric consisting of {[La(Pydc)2(H2O)2]·4H2O} n units linked through carboxylate oxygen atoms and exhibiting nine coordination number. Intermolecular O–H···O hydrogen bonds produce R 1 1 (6), R 4 4 (16) and R 4 4 (20) rings, which lead to three-dimensional polymeric chains. The crystal structure of the cerium(III) complex, 2 [{Ce(Pydc)3}{Ce(Pydc)(HO–CH2CH2–OH)(H2O)3}·6H2O)] shows that the complex is a mixed-ligand binuclear system in which one cerium coordinated to three Pydc molecules, while the other cerium is bound to one Pydc, one oxygen atom of the other Pydc, one ethylene glycol and three water molecules. Each of the two Ce(III) ions is nine coordinated. Intermolecular O–H···O hydrogen bonds produce R 2 2 (8) and R 2 2 (20) rings, which lead to three-dimensional polymeric chains. The complexes were further investigated using elemental analysis, FTIR spectroscopy and thermogravimetric analysis.  相似文献   

7.
Denitrification strongly depends on the availability of carbon source in constructed wetlands (CWs). In this study, several relevant carbon source extracting solutions made from hydrolyzate of selected wetland litters were added to CWs for nitrogen removal enhancement. The feasibility of supplying a carbon extracting solution to improve potential denitrification rate in horizontal subsurface flow constructed wetland was deeply investigated. Combinations of different hydraulic retention time (HRT, especially for 2-day and 4-day) with different influent COD/N ratios were designed to prove the enhancement on denitrification by carbon source supplement. In addition, specific denitrification rate (SDNR) was calculated for the comparison of the nitrogen removal at different COD/N ratios. The sequential operation results on total nitrogen (TN) and nitrate (NO 3 ? -N) removal efficiencies were obtained in CW system with an influent COD/N ratio of 4.0. The accumulation of nitrite (NO 2 ? -N) was found to be closely related to the removal of NO 3 ? -N. Meanwhile, no obvious accumulation of NO 2 ? -N was found when the removal of NO 3 ? -N was relatively high.  相似文献   

8.
This work represents an idea of forming nanoporous structures on surface of a LPD (liquid phase deposition)-derived GeO2 ceramic film by thermal reduction of GeO2 under hydrogen atmosphere. SEM, XRD and Raman analyses show that well-defined nanopores with size in range of 10–100 nm have been formed on surface of GeO2 film by annealing at 600 °C for 5–10 min. The pore formation process is furthered by structural defects which serve as active sites for the thermal reduction reaction. Fast phase transformation from hexagonal GeO2 to tetragonal GeO2 has occurred within the first 5 min of annealing. Green-yellow (2.32 eV) and violet (2.9 eV) photoluminescences originating from $ {\text{O}} {-} \mathop {\text{Ge}}\limits^{ \bullet \bullet } {-} {\text{O}} $ and ≡Ge–Ge≡ defects are observed in the film samples. The photoluminescence peak intensity decreases with increase of annealing time due to diminution of O/Ge ratio. The film annealed for 5 min exhibits a maximum green-yellow to violet PL peak ratio, which is related to generation of some new $ {\text{O}} {-} \mathop {\text{Ge}}\limits^{ \bullet \bullet } {-} {\text{O}} $ defects at the phase interface.  相似文献   

9.
Ring opening polymerization (ROP) of 1,3,5-tri-n-hexyl,1,3,5-trimethylcyclotrisiloxane (D 3 Hexa ) and 1,3,5-tri-n-heptyl,1,3,5-trimethylcyclotrisiloxane (D 3 Hepta ) was promoted by acid-treated synthetic silica–alumina to obtain Gaussian homo asymmetric polysiloxanes. Mw was above 70?kg/mol, meaning that homo asymmetric bulky side-group polysiloxane chains with high molecular weight were obtained. The material was treated in an acidic medium to improve the contents of acid sites and successfully tested as an inorganic acidic catalyst for ROP of D 3 Hexa and D 3 Hepta cyclosiloxanes. The samples of poly(methylhexylsiloxane) (PMHS) and poly(methylheptylsiloxane) (PMHepS) obtained were structurally characterized mainly by 29Si NMR. All the experimental values including the refractive index increment (dn/dc), the second virial coefficient (A2), the square root of the mean square radius of gyration ( $ \langle {{\text{RMS}}_{\text{radius}}}^{ 2} \rangle^{ 1/ 2} $ ), the average molecular weight (Mw), the average molecular numeral (Mn), and the weight polydispersity (Mw/Mn) were obtained using a gel permeation chromatography/light scattering (GPC/LS) coupled system. The A2 experimental value for the two polymers (between 4 and 6.5?×?10?4?mol/mL?g2) indicated that toluene was a good solvent. In addition, PMHS and PMHepS $ \langle {{\text{RMS}}_{\text{radius}}}^{ 2} \rangle^{ 1/ 2} $ were greater than 30?nm, indicating that larger chains of high molecular weight were obtained.  相似文献   

10.
Sulfated mixed oxides, SO 4 = /Ni–Al–O and SO 4 = /Zr–Al–O were evaluated for double bond isomerization (DBI) of 1-hexene using helium and hydrogen as carrier gases. The increase of temperature from 100 to 200 °C seems to favor the deprotonation pathway and contribute to increase the 1-hexene conversion for both catalysts and without regard of the carrier gas. The results indicate that temperature it is the main factor that contributes to improve both conversion and selectivity towards (cis + trans)-2-hexene, while the reductive atmosphere beneficiate only the SO 4 = /Ni–Al–O catalyst performance, as hydrogen prevents this catalyst from a fast deactivation.  相似文献   

11.
The M1 phase of the MoV(Nb,Ta)TeO system is one of the most effective catalysts for the ammoxidation and selective oxidation of propane to acrylonitrile (AN) and acrylic acid, respectively. The active centers of the M1 phase reside on the ab planes of this crystalline material (i.e., the (001) lattice face). Early on we proposed that the thus located active centers contain all key catalytic elements strategically placed for the conversion of propane to AN. These seven element comprising active centers contain: five metal oxide octahedra (2 V 0.32 5+ /Mo 0.68 6+ , 1 V 0.62 4+ /Mo 0.38 6+ , 2Mo 0.5 6+ /Mo 0.5 5+ ) and two Te4+??oxygen sites. In this contribution we analyze the various compositional probabilities of the seven element active centers and their additional eight element surroundings and conclude that there are 32 possible compositional arrangements of this 15 element assembly. From the diverse structural arrangements, diverse catalytic properties can be assigned to the individual sites, leading to diverse propane reaction pathways. We conclude that there are 22% AN forming, 22% propylene, 10% waste and 46% inert sites. After normalization these sites are deemed to lead to the following product yields: 41% AN, 41% propylene and 18% waste. The highest experimentally attained AN yield from propane is 42%, employing M1 phase only, which coincides with the predicted value of a concerted mechanism. Higher AN yields are, however, anticipated, up to a lofty upper limit of 82%, by allowing also for a consecutive mechanism (C3° ?? C 3 = ??AN). This possibility can be rationalized on the basis of the existence of vicinal C3° ?? C 3 = /C 3 = ??AN sites whose presence is plentiful on the catalytically important ab planes of M1. The placement and efficiency of these sites is, however, not perfect; therefore the upper AN yield limit is not realized in practice. Our analysis of the elemental distribution at the active centers and their immediate surroundings provides us with new insights into the relationship between structure and catalytic reaction mechanisms of the M1 phase and might serve as a guide towards a redesign of the M1 composition, so as to attain higher AN yields from propane. It provides a challenging task for the synthetic chemist.  相似文献   

12.
Electrochemical reduction of AlCl3 dissolved in acidic AlCl3-n-butyl-pyridinium chloride melt was studied by linear sweep voltammetry and chronopotentiometry at tungsten and platinum electrodes, in the Al2Cl 7 ? concentration range 0.3 to 0.5 M between 30 and 60°C. Al2Cl 7 ? bulk reduction was preceded by a nucleation (tungsten) or alloy formation phenomenon (platinum). The overall results agree rather well with the mechanism: $$\begin{gathered} 2AlCl_4^ - \rightleftarrows Al_2 Cl_7^ - + Cl^ - \hfill \\ 4Al_2 Cl_7^ - + 3e \rightleftarrows Al + 7AlCl_4^ - \hfill \\ \end{gathered} $$ The electrochemical reaction appeared quasi-reversible. Calculated values of the product of the transfer coefficient by the number of the electron exchanged in the rate determining step were in the range 0.45 to 0.7. Diffusion coefficients for Al2Cl 7 ? were calculated.  相似文献   

13.
In order to investigate the partial electronic conduction in the high oxide ion conductor of the system Bi2O3-Y2O3 under low oxygen pressure, e.m.f. and polarization methods were employed. Although the electrolyte was decomposed when the \(P_{{\text{O}}_{\text{2}} }\) was lower than the equilibrium \(P_{{\text{O}}_{\text{2}} }\) of Bi, Bi2O3 mixture at each temperature, the ionic transport number was found to be close to unity above that \(P_{{\text{O}}_{\text{2}} }\) . The hole conductivity (σ p) and the electron conductivity (σ p) could be expressed as follows, $$\begin{gathered} \sigma _p \Omega cm = 5 \cdot 0 \times 10^2 \left( {P_{O_2 } atm^{ - 1} } \right)^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} \exp \left[ { - 106 kJ\left( {RT mol} \right)^{ - 1} } \right] \hfill \\ \sigma _p \Omega cm = 3 \cdot 4 \times 10^5 \left( {P_{O_2 } atm^{ - 1} } \right)^{ - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} \exp \left[ { - 213 kJ\left( {RT mol} \right)^{ - 1} } \right] \hfill \\ \end{gathered} $$ These values were much lower than the oxide ion conductivity under ordinary oxygen pressure.  相似文献   

14.
15.
Surface of OH groups on reduced MoO2-MgO catalysts such as $$ - - Mg - - O - - \begin{array}{*{20}c} {||} \\ {Mo} \\ | \\ \end{array} - - OH$$ may act as an active site for hydrogenation of propene. The surface hexa-coordinated Mo5+ ion (MO 6c 5+ ) was reduced to a lower number of cation such as Mo4+ or Mo3+ which act as an active site for metathesis of propene.  相似文献   

16.
Methyl bromide was synthesized by reacting methane with oxygen and hydrogen bromide over Rh/SiO2 catalyst. The reaction started from the oxidation of HBr to form active bromine species (Br? radicals and Br* surface species), which in turn reacted with CH4 to form CH 3 ? radicals and $\hbox{CH}_{3}^{\ast}$ surface species. These CH 3 ? and $\hbox{CH}_{3}^{\ast}$ species reacted with the active bromine species to form CH3Br and CH2Br2. The presence of HBr inhibited the deep oxidation and the steam reformation of CH4 and therefore, guaranteed the high selectivity of CH3Br. In the presence of HBr, CO was formed from the oxidation and steam reformation of CH3Br, while CO2 was formed from the oxidation and steam reformation of CO over Rh/SiO2 at reaction temperature higher than 560 °C.  相似文献   

17.
The thermo electric power, ΔET, of the cell $$\begin{gathered} O_2 + N_{2, } Pt/Bi_2 O_3 (\delta phase)/Pt, O_2 + N_2 \hfill \\ (T + \Delta T) (T) \hfill \\ \end{gathered}$$ has been measured as a function of oxygen pressure (10?4 atm ? p(O2) ? 1 atm) in the temperature range 650–800° C. The experimental result can be described by: $$[ \in ({\rm O}_2 /{\rm O}^{2 - } ) - \in (e, Pt)] = [45.6 \pm 5.6 log p(O_2 ) - 261](\mu VK^{ - 1} )$$ within experimental error, where ε(O2/O2), the Seebeck coefficient ofδ-Bi2O3, stands for \(\mathop {\lim }\limits_{\Delta T \to 0} \Delta E/\Delta T\) The change of ΔET with oxygen pressure corresponds to the change of the partial molar entropy of O2. The heat of transport of O2? ions is calculated to be 0.13 eV ± 0.01 whereas the activation enthalpy for ionic conduction is 0.30 eV. From this discrepancy it is concluded that the free ion model of Rice and Roth cannot be applied, while the extended lattice gas model of Girvin might explain the results when strong polaron coupling is assumed.  相似文献   

18.
A heteronuclear complex of [Mn(H2O)4(CuL)2]2·4H2O 1 (H2L = 2-hydrogen benzaldehydeneglycylglycine) has been synthesized and characterized by IR spectra, TGA, and single crystal X-ray diffraction analysis. The molecule consists of one $\text{Mn}{(\text{H}_{2}\text{O})_{4}}^{2+}$ Mn(H2O) 4 2+ group and two symmetric groups [CuL]? which are connected by carboxylate oxygen atoms. A discrete water hexamer composed of a planar tetrameric water ring and two pendent water molecules acts as a ‘glue’ to assemble adjacent [CuL]? into a two-dimensional structure.  相似文献   

19.
Photocatalytic degradation of ammonia on supported TiO2 nanoparticles was investigated. The TiO2 nanoparticles used as photocatalyst were coated on light expanded clay aggregate granules (LECA), which is a porous and light weight support. Photocatalytic reaction activity of prepared catalyst was determined by ammonia degradation from water synthetically polluted with ammonia. Experiment results showed significantly high photocatalytic activity for the immobilized catalysts. The ammonia was removed more than 85% within 300 min of the process with optimum calcinations temperature 550 °C and pH 11. Kinetics of the photocatalytic reaction followed a pseudo-first order model. XRF, XRD and SEM analyses revealed a rather uniform coating of TiO2 on the support. By using floated TiO2/LECA as a photocatalyst in aqueous solution of NH 3 ? , the ammonia was photodegraded into N2 and H2 gases, while NO 2 ? and NO 3 ? were formed at very low concentrations.  相似文献   

20.
Thermodynamic diagrams for the copper/molten potassium nitrate system have been calculated and expressed either as potential/pO2?, potential/pO 2 ? or potential/pO 2 2? diagrams. They exhibit the corresponding immunity, active dissolution, passivity and transpassivity regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号