首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytokines and chemokines have been implicated in contributing to the initiation, propagation and regulation of immune and inflammatory responses. Also, these soluble mediators have important roles in contributing to a wide array of neurological diseases such as multiple sclerosis, AIDS Dementia Complex, stroke and Alzheimer's disease. Cytokines and chemokines are synthesized within the central nervous system by glial cells and neurons, and have modulatory functions on these same cells via interactions with specific cell-surface receptors. In this article, I will discuss the ability of glial cells and neurons to both respond to, and synthesize, a variety of cytokines. The emphasize will be on three select cytokines; interferon-gamma (IFN-gamma), a cytokine with predominantly proinflammatory effects; interleukin-6 (IL-6), a cytokine with both pro- and anti-inflammatory properties; and transforming growth factor-beta (TGF-beta), a cytokine with predominantly immunosuppressive actions. The significance of these cytokines to neurological diseases with an immunological component will be discussed.  相似文献   

2.
3.
4.
The distribution of microperoxisomes was studied in areas of the central nervous system having high concentrations of catecholaminergic neurons and in areas lacking this neuron type, using the alkaline DAB cytochemical method for catalase. Substantial numbers of microperoxisomes are found in neurons in the locus coeruleus and in nucleus A1 of the medulla, as well as in the substantia nigra, whereas few catalase-reactive bodies are seen in neurons of the cerebrum and cerebellum. The number of catalase-reactive microperoxisomes per unit area in the catecholaminergic neurons of the CNS is comparable to the number seen previously in neurons of the peripheral cervical sympathetic ganglia. Some spinal cord neurons also contain reactive microperoxisomes. Catalase-reactive microperoxisomes are numerous in oligodendrocytes of all areas studied, and in ependymal cells bordering the third and fourth ventricles. Astrocytes contain few reactive structures in the cytoplasm near the nucleus, but they are readily found in astrocytic processes and end-feet.  相似文献   

5.
We examined whether the cytokine IL-12 could be induced locally in the brain or in glial cell cultures following LPS treatment. In the brain, expression of IL-12 p35 mRNA was constitutive and did not alter following i.p. injection of LPS. In contrast, IL-12 p40 mRNA was only detectable in the brain of mice given two staggered injections of LPS. Dual labeling in situ analysis revealed IL-12 p40 RNA-positive cells scattered throughout the brain parenchyma, with a small number of these cells being identified as astrocytes, while the majority of IL-12 p40 RNA-expressing cells appeared to be microglia. In cultured microglia or astrocytes, LPS and to a much lesser degree IL-1beta, but not IFN-gamma or TNF-alpha, induced the expression of IL-12 p40 mRNA. Numerous glial fibrillary acidic protein-immunopositive cells colabeled for IL-12 p40 RNA; indicating that LPS-stimulated astrocytes expressed IL-12 in vitro. Immunoblot analysis of lysates from LPS-treated astrocytes revealed the presence of multiple species of 40, 43, 75, and 120 kDa containing the IL-12 p40 protein. Finally, secretion of the IL-12 p75 heterodimer was detectable by ELISA from astrocytes treated with LPS plus IFN-gamma, but not with LPS alone. The findings indicate that IL-12 gene expression can be activated in the brain, with the resident glial cells being a prodigious source of this cytokine. The localized production of IL-12 may have a significant impact on the development of cell-mediated immune responses within the central nervous system.  相似文献   

6.
Adriamycin elicited a stimulation of rat central nervous system lipid peroxidation, both in vivo and in vitro, as evidenced by the increase in the content of thiobarbituric acid reactants, which was found to be NADPH-dependent. The antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were seen to decrease on exposure to adriamycin (1 mg/kg for a period of 7 days), together with a significant decrement in the GSH/GSSG ratio, thus contributing to the oxidative insult to the tissue. The in vitro addition of GSH or vitamin E to brain homogenates offered protection against adriamycin-induced lipid peroxidation, suggesting that supplementation with these antioxidants could improve the therapeutic value of the drug.  相似文献   

7.
EAAC1 is a neuronal and epithelial high affinity glutamate transporter previously cloned from rabbit intestine. Here we report the isolation of EAAC 1 from rat brain* and its expression in the central nervous system based on in situ hybridization. Strong signals were detected in brain, spinal cord and retina. Expression of EAAC1 was particularly strong in pyramidal cells of the cerebral cortex, pyramidal cells of the hippocampus, mitral cells of the olfactory bulb, various thalamic nuclei and cells of certain retinal layers. EAAC1 was also expressed in non-glutamatergic neurons such as GABAergic cerebellar Purkinje cells and alpha-motor neurons of the spinal cord. We propose that EAAC1 is not only involved in the sequestration of glutamate at glutamatergic synapses and in protecting neurons from glutamate excitotoxicity, but also in the cellular metabolism involving glutamate.  相似文献   

8.
The effect on central myelin of Actinomycin D, an RNA--and, secondarily, a protein-synthesis inhibitor, has been studied by light and electron microscopy. The intracranial injection of this drug produced an extensive status spongiosus of the white matter in the cerebrum, cerebellum, brain stem and optic nerve within 48 h. The status spongiosus was due to vacuole formation within the myelin sheath and to enlargement of the extracellular space. Three types of vacuoles were observed: (a) the most common varieties formed between the inner tongue and the remainder of the myelin sheath; (b) a second variety formed by enlargement of the periaxonal space with separation of the axon from its myelin sheath, and (c) a less common type of vacuolization was due to splitting of the myelin lamellae at the interperiod line to form large intramyelinic vacuoles. Myelinic vacuoles were preceded by nuclear and cytoplasmic changes in oligodendrocytes, which included nucleolar segregation, disaggregation, and diminution in number of ribosomes. These changes were similar to those previously reported in a variety of cells exposed to Actinomycin D. It is suggested that myelin vacuoles result secondarily from the Actinomycin D inhibitory effect on oligodendroglial RNA--and protein-synthesis, rather than from a direct effect of this drug on the myelin sheath.  相似文献   

9.
10.
CD9 is a cell surface protein implicated in intercellular signaling that has been identified in selected cell types of the hematopoietic system. To begin a study of the role of CD9 in the developing and adult nervous system, we used the anti-rat CD9 monoclonal antibody ROCA2 to determine the distribution of this protein. The identity of the antigen in these tissues was confirmed by immunoblotting and peptide sequencing. Early embryonic sympathetic and dorsal root ganglion sensory neurons and adrenal chromaffin cells all express CD9. ROCA2 also labels the somas, axons, and growth cones of cultured sympathetic and sensory neurons. In the central nervous system (CNS), CD9 is transiently and specifically expressed in embryonic spinal motoneurons. In the adult, central and peripheral glia intensely express CD9. Thus, CD9 is developmentally regulated in a variety of peripheral and central neurons and glia, including proliferating progenitors as well as mature cells. These findings suggest that CD9 may have diverse roles in the nervous system.  相似文献   

11.
Ataxia telangiectasia (AT) is characterized by progressive neurodegeneration that results from mutation of the ATM gene. However, neither the normal function of ATM in the nervous system nor the biological basis of the degeneration in AT is known. Resistance to apoptosis in the developing central nervous system (CNS) of Atm-/- mice was observed after ionizing radiation. This lack of death occurred in diverse regions of the CNS, including the cerebellum, which is markedly affected in AT. In wild-type, but not Atm-/- mice, up-regulation of p53 coincided with cell death, suggesting that Atm-dependent apoptosis in the CNS is mediated by p53. Further, p53 null mice showed a similar lack of radiation-induced cell death in the developing nervous system. Atm may function at a developmental survival checkpoint that serves to eliminate neurons with excessive DNA damage.  相似文献   

12.
The objective of this study was to assess patient satisfaction with the investigation and initial management of infertility. A postal questionnaire survey was carried out of 1366 women attending outpatient clinics for the investigation and initial management of infertility at 12 hospitals throughout Scotland. The response rate to the questionnaire was 59% (806/1366). Overall, 87% of responders were satisfied or very satisfied with their care but a number of deficiencies were identified. Thirty-nine per cent had never been asked to bring their partner to the clinic and 86% felt they had not been given enough help with the emotional aspects of infertility. Forty-seven per cent felt they were not given a clear plan for the future and 23% of those who had been given drug treatments reported receiving little or no information about the treatment or possible side-effects. Overall, only a third had been given any written information and 78% expressed a wish for more written information. Women ranked 'the information and explanation given' and the 'attitude of the doctor at the clinic' highly in comparison to other aspects of their care, including 'help with the emotional aspects of infertility'. In general women were satisfied with their care but improvements may be made by giving more explanation and written information and by adopting a more couple-centred approach. Where resources allow, clinics should take steps to address the emotional aspects of infertility.  相似文献   

13.
14.
A novel member of the opioid receptor family (ORL-1) has been cloned from a variety of vertebrates. ORL-1 does not bind any of the classical opioids, although a high affinity endogenous agonist with close homology to dynorphin has recently been identified. We have generated a monoclonal antibody to the N-terminus of ORL-1 to map areas of receptor expression in rat central nervous system (CNS). Intense and specific immunolabeling was observed in multiple areas in the diencephalon, mesencephalon, pons/medulla, and spinal cord. In the telencephalon, intense labeling was observed in the neuropil throughout layers II-V in the neocortex, the anterior olfactory nuclear complex, the pyriform cortex, the CA1-CA4 fields and dentate gyrus of the hippocampus, and in many of the septal and basal forebrain areas. In contrast to other members of the opioid receptor family, light labeling for ORL-1 was observed in telencephalic areas such as caudate-putamen. In the cerebellum, ORL-1 immunoreactivity was only observed in the deep nuclei. Throughout the CNS the majority of labelling was localized to fiber processes and fine puncta, although labeled scattered perikarya were observed in a few brain areas such as the hilus dentate in the hippocampus and some nuclei in the brainstem and spinal cord. The present mapping study is consistent with the reported distribution of ORL-1 mRNA and provides the first immunohistochemical report on anatomical and cellular distribution of ORL-1 receptor in the rat CNS.  相似文献   

15.
16.
Receptor serine-threonine kinases (RSTK) mediate inhibitory as well as stimulatory signals for growth and differentiation by binding to members of the transforming growth factor-beta (TGF-beta) superfamily. Over 12 different RSTKs have been isolated so far, displaying wide expression in peripheral tissues and in the nervous system. Here we report the isolation and characterization of a novel type I RSTK termed activin receptor-like kinase-7 (ALK-7) that, unlike other members of this receptor family, is predominantly expressed in the adult central nervous system. The ALK-7 gene encodes a 55-kDa cell-surface protein that exhibits up to 78% amino acid sequence identity in the kinase domain to previously isolated type I receptors for TGF-beta and activin. In the extracellular domain, however, ALK-7 is more divergent, displaying comparable similarities with all members of the ALK subfamily. RNase protection and in situ hybridization studies demonstrated a highly specific mRNA distribution restricted to neurons in several regions of the adult rat central nervous system, including cerebellum, hippocampus, and nuclei of the brainstem. Receptor reconstitution and cross-linking experiments indicated that ALK-7 can form complexes with type II RSTKs for TGF-beta and activin in a ligand-dependent manner, although direct binding of ALK-7 to ligand in these complexes could not be demonstrated. The specific expression pattern of ALK-7, restricted to the postnatal central nervous system, indicates that this receptor may play an important role in the maturation and maintenance of several neuronal subpopulations.  相似文献   

17.
A coculture method is described for ensheathing glial cells from adult rat olfactory nerve, serving as a substrate for the regrowth of neurites from adult rat retinal ganglion cells. Immunocytochemically identified phenotypes present in primary cultures of olfactory nerve cells are described, and their ability to promote neurite outgrowth is compared with neonatal astrocytes and Schwann cells, with other nonglial cells, and with laminin. Ensheathing cell cultures were more effective than any other substrate tested and also directed the orientation of regrowing neurites. In comparison with cultured Schwann cells, which released neurotrophic factors into the culture medium, there was no evidence of a similar activity in ensheathing cell cultures. Combinations of ensheathing cell-conditioned medium and substrates of laminin, merosin, or 3T3 cells also failed to show the release of factors enhancing either survival or neurite outgrowth from retinal ganglion cells. Evidence is presented for a partial inhibition of neurite outgrowth in the presence of calcium channel antagonists or an intracellular calcium-chelating reagent. This provides evidence for a contribution from an intracellular calcium signaling mechanism, possibly implicating ensheathing cell adhesion molecules in promoting neurite outgrowth.  相似文献   

18.
Hypnosis is not a therapy, but can provide the clinician with a set of techniques which may be used to augment or facilitate a particular course of treatment. The importance of the patient's history and clinical findings in the diagnosis of intolerance to dentures and the selection of patients for hypnosis is discussed. Principles of treatment using relaxation, anxiety control, conditioning/desensitisation and confidence boosting techniques are described. Some examples of typical case histories are used to illustrate the application of a variety of techniques that have been found to be successful.  相似文献   

19.
We have generated and characterized a multi-functional polyclonal anti-brain-derived neurotrophic factor antibody. Western blot analysis, dorsal root ganglion neurite outgrowth and dorsal root ganglion neuron survival assays showed that this antibody specifically recognized brain-derived neurotrophic factor and not the other neurotrophins. Furthermore, it was capable of blocking the functional effects of brain-derived neurotrophic factor. Using this antibody, we examined the expression of brain-derived neurotrophic factor in adult rat brains by immunohistochemistry. We found distinct brain-derived neurotrophic factor immunoreactivity in several structures of the brain. These included the neocortex, piriform cortex, amygdaloid complex, hippocampal formation, claustrum, some thalamic and hypothalamic nuclei, the substantia nigra and some brainstem structures. In contrast to brain-derived neurotrophic factor messenger RNA expression, brain-derived neurotrophic factor immunoreactivity was also found in the lateral septum, bed nucleus of the stria teminalis, medial preoptic nucleus, olivery pretectal nucleus, lateral paragigantocellular nucleus and the dorsal horn of the spinal cord. In normal adult rat brains, there was little or no staining in the CA1 region or the granule cell layer of the dentate gyrus of the hippocampus. However, kainate treatments greatly increased brain-derived neurotrophic factor immunoreactivity in the pyramidal cells of the CA1 region, as well as in the dentate gyrus, CA2 and CA3 hippocampal regions. We present evidence for both the subcellular localization and anterograde transport of endogenous brain-derived neurotrophic factor in the central nervous system. The detection of brain-derived neurotrophic factor protein in several discrete regions of the adult brain, and brain-derived neurotrophic factor's dramatic up-regulation following kainate treatment, strongly supports a role of brain-derived neurotrophic factor in the maintenance of adult neurons and synapses. Since several populations of neurons lost during neurodegenerative diseases synthesize brain-derived neurotrophic factor protein, modulation of brain-derived neurotrophic factor levels may be clinically beneficial. The antibody described in this paper will be helpful in determining more precisely the functional activities of brain-derived neurotrophic factor in the adult.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号