共查询到19条相似文献,搜索用时 78 毫秒
1.
模糊聚类在数量型关联规则提取中的应用 总被引:1,自引:0,他引:1
关系数据库中数量属性的关联规则挖掘问题是经常要遇到的问题。该文利用改进的FCM进行模糊聚类,主要是解决FCM算法的局部极小问题。利用聚类的结果可以使数量型属性关联规则向类别型属性转换,类别型属性再转化为布尔型属性,这样,便可以从许多关联规则的挖掘方法中找出有意义的规则。 相似文献
2.
讨论了数据库中含有数量和类别属性的数据的关联规则挖掘方法。利用模糊集的理论与方法求解数量相关问题,给出了模糊概念关联规则挖掘算法Apriori_concept。 相似文献
3.
数据挖掘是关联规则中一个重要的研究方向。该文对关联规则的数据挖掘和遗传算法进行了概述,提出了一种改进型遗传算法的关联规则提取算法。最后结合实例给出了用遗传算法进行关联规则的挖掘方法。 相似文献
4.
5.
数据挖掘是关联规则中一个重要的研究方向。该文对关联规则的数据挖掘和遗传算法进行了概述,提出了一种改进型遗传算法的关联规则提取算法。最后结合实例给出了用遗传算法进行关联规则的挖掘方法。 相似文献
6.
首先对关联规则的数据挖掘和遗传算法进行了介绍,根据关联规则的要求和特点,结合遗传算法的思想。提出了一种基于遗传算法的关联规则挖掘算法,并给出一简单实例,说明本文方法的有效性。 相似文献
7.
基于模糊关联规则的交通事故分析应用研究 总被引:3,自引:0,他引:3
研究发现交通事故潜在规律,预测交通事故的发生,针对关联规则方法用于交通事故分析,对交通的数值型属性无法给出有效地划分,为提高安全管理决策,提出引入模糊聚类,用改进FCM( Fuzzy c-Means)方法对数值属性进行聚类,可用取值的范围对分类属性进行聚类,采用模糊关联规则挖掘导致交通事故的原因和规律.模糊关联规则首先对FCM算法进行了改进,包括隶属度、权值和中心点的计算和修正方法,利用模糊关联规则方法进行挖掘,最后对算法进行了仿真和可视化显示,结果表明模糊关联规则方法挖掘出的规则符合现实情况,为交通管理提供有效的方法. 相似文献
8.
9.
基于模糊聚类的模糊关联规则挖掘 总被引:2,自引:0,他引:2
通过模糊聚类,从已知数据中得到数据点对数据类的隶属度,并以此进行模糊关联规则的挖掘,从而使得模糊关联规则的发现不依赖于人类专家预先给出的隶属度函数;并且实验表明。聚类并没有带来显著的顿外计算时间,对于大型数据库,文章提出的方法是有效的。 相似文献
10.
通过给定的最小支持率和最小信任度来挖掘语言值关联规则往往会得到很多规则,而且这些规则之间存在一定的冗余,因此需要对语言值关联规则进行筛选.提出一种基于遗传算法的语言值关联规则筛选方法.此方法首先对语言值关联规则进行二进制编码,并通过遗传算法全局搜索一组语言值关联规则,使得对所有样本点的线性平均误差最小.实验表明,算法能够大量减少语言值关联规则的数量,并筛选出对用户更有用的语言值关联规则 相似文献
11.
12.
一种基于约简概念格的关联规则快速求解算法 总被引:2,自引:2,他引:2
关联规则挖掘是数据挖掘领域中重要的研究分支,已形成了较多的研究成果。然而,大多数基于频繁项集求解关联规则的挖掘算法需要多次扫描数据库。该文提出了一种基于概念格的关联规则快速求解算法,该算法仅需一次扫描数据库即可确定所有的频繁项集并且进而能够快速求解出关联规则。文章首先讨论了约简概念格(RECL)的构造原理,并详细描述了基于RECL的关联规则的挖掘算法,最后以实验证明了算法的正确性和优越性。 相似文献
13.
关联规则的发现是整个数据挖掘课题中的重要组成部分。在归纳现有关联规则研究的基础上提出了事务间数值型关联规则的数据挖掘问题,并对该问题进行了定义。应用模糊理论和相关的数据挖掘技术,提出了解决该问题的E—QA算法,并以实例对算法可行性进行验证,指出了算法存在的一些问题以及今后解决这些问题的思路。 相似文献
14.
基于数值属性的关联规则挖掘算法 总被引:7,自引:0,他引:7
关联规则的挖掘是一个重要的数据挖掘问题。目前的算法主要是研究支持—信任框架理论的关联规则挖掘,基于支持—信任理论的关联规则挖掘布尔型描述的数据已经比较成熟,但是现实的数据库中有许多数值属性的数据,从这些数据中挖掘潜在的规则,经典的关联规则方法(Apriori)就显得力不从心了。这里介绍将数值数据映射到二维空间,利用基于密度分布函数的聚类分析方法将数值属性区间分段,并在此基础上挖掘容易理解并且具有概括性和有效的数值属性关联规则。 相似文献
15.
16.
基于确信因子的有效关联规则挖掘 总被引:1,自引:0,他引:1
通过对现有的关联规则算法分析与研究发现,生成的关联规则具有相大的冗余性,且可能是无趣的,甚至是虚假的,为此人们主要提出了兴趣度作为有效规则评判标准。该文在先前研究的基础上,以确信因子为基础,提出确信度来使规则的有效性判断更加客观、合理。同时在算法中引入规则取舍,提高了挖掘有效规则的效率。 相似文献
17.
18.
提出一种基于人工免疫方法的关联规则提取算法,将人工免疫方法应用于关联规则的提取。本算法采取“随机并行搜索”策略,快速识别出候选关联规则,整个挖掘过程最后只需扫描数据库一遍,也不需生成大量的频繁项目集,从而提高关联规则挖掘的总体性能。 相似文献
19.
关联规则是数据挖掘的重要研究内容之一。传统的关联规则挖掘算法仅适于处理二元属性与分类属性。为更好地处理数量属性,提出了一种自适应的基于模糊概念的量化关联规则挖掘算法。该算法克服了传统的离散分区法的不足,改进了已有模糊关联规则支持度的计算方法。引入了一种基于聚类的隶属函数自动生成方法,使得模糊关联规则的发现不依赖于人类专家给出的隶属函数,使得关联规则的表示自然、简明,有利于专家理解。实验表明该算法是有效的。 相似文献