首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
模糊聚类在数量型关联规则提取中的应用   总被引:1,自引:0,他引:1  
王越  曹长修 《计算机仿真》2003,20(11):64-66,69
关系数据库中数量属性的关联规则挖掘问题是经常要遇到的问题。该文利用改进的FCM进行模糊聚类,主要是解决FCM算法的局部极小问题。利用聚类的结果可以使数量型属性关联规则向类别型属性转换,类别型属性再转化为布尔型属性,这样,便可以从许多关联规则的挖掘方法中找出有意义的规则。  相似文献   

2.
张艳 《计算机时代》2009,(10):49-50,53
讨论了数据库中含有数量和类别属性的数据的关联规则挖掘方法。利用模糊集的理论与方法求解数量相关问题,给出了模糊概念关联规则挖掘算法Apriori_concept。  相似文献   

3.
数据挖掘是关联规则中一个重要的研究方向。该文对关联规则的数据挖掘和遗传算法进行了概述,提出了一种改进型遗传算法的关联规则提取算法。最后结合实例给出了用遗传算法进行关联规则的挖掘方法。  相似文献   

4.
遗传算法在关联规则挖掘中的应用   总被引:14,自引:0,他引:14  
该文尝试和遗传算法挖掘关联规则,并结合图书馆智能型读者测评系统,给出了一个基于遗传算法进行了关联规则挖掘的实例。  相似文献   

5.
数据挖掘是关联规则中一个重要的研究方向。该文对关联规则的数据挖掘和遗传算法进行了概述,提出了一种改进型遗传算法的关联规则提取算法。最后结合实例给出了用遗传算法进行关联规则的挖掘方法。  相似文献   

6.
赵艳丽 《福建电脑》2008,24(7):97-98
首先对关联规则的数据挖掘和遗传算法进行了介绍,根据关联规则的要求和特点,结合遗传算法的思想。提出了一种基于遗传算法的关联规则挖掘算法,并给出一简单实例,说明本文方法的有效性。  相似文献   

7.
基于模糊关联规则的交通事故分析应用研究   总被引:3,自引:0,他引:3  
研究发现交通事故潜在规律,预测交通事故的发生,针对关联规则方法用于交通事故分析,对交通的数值型属性无法给出有效地划分,为提高安全管理决策,提出引入模糊聚类,用改进FCM( Fuzzy c-Means)方法对数值属性进行聚类,可用取值的范围对分类属性进行聚类,采用模糊关联规则挖掘导致交通事故的原因和规律.模糊关联规则首先对FCM算法进行了改进,包括隶属度、权值和中心点的计算和修正方法,利用模糊关联规则方法进行挖掘,最后对算法进行了仿真和可视化显示,结果表明模糊关联规则方法挖掘出的规则符合现实情况,为交通管理提供有效的方法.  相似文献   

8.
传统的遗传算法存在早熟收敛和易于陷入局部搜索最优等缺陷;根据关联规则挖掘的要求和特点,提出一种应用于关联规则挖掘的自适应小生境遗传算法.  相似文献   

9.
基于模糊聚类的模糊关联规则挖掘   总被引:2,自引:0,他引:2  
通过模糊聚类,从已知数据中得到数据点对数据类的隶属度,并以此进行模糊关联规则的挖掘,从而使得模糊关联规则的发现不依赖于人类专家预先给出的隶属度函数;并且实验表明。聚类并没有带来显著的顿外计算时间,对于大型数据库,文章提出的方法是有效的。  相似文献   

10.
通过给定的最小支持率和最小信任度来挖掘语言值关联规则往往会得到很多规则,而且这些规则之间存在一定的冗余,因此需要对语言值关联规则进行筛选.提出一种基于遗传算法的语言值关联规则筛选方法.此方法首先对语言值关联规则进行二进制编码,并通过遗传算法全局搜索一组语言值关联规则,使得对所有样本点的线性平均误差最小.实验表明,算法能够大量减少语言值关联规则的数量,并筛选出对用户更有用的语言值关联规则  相似文献   

11.
发掘多值属性的关联规则   总被引:45,自引:1,他引:45  
张朝晖  陆玉昌  张钹 《软件学报》1998,9(11):801-805
属性值可以取布尔量或多值量.从以布尔量描述的数据中发掘关联规则已经有比较成熟的系统和方法,而对于多值量则不然.将多值量的数据转化为布尔型的数据是一条方便、有效的途径.提出一种算法,根据数据本身的情况决定多值量的划分,进而将划分后的区段映射为布尔量,在此基础上可发掘容易理解且具有概括性的、有效的关联规则.  相似文献   

12.
提出了一种挖掘量化关联规则的MQAR算法。此算法在挖掘关联规则时,只需扫描事务数据库一遍,提高了数据挖掘的效率;并且存放辅助信息所占的内存空间大大少于现有的挖掘算法;同时此算法不仅能挖掘出有关联的数据项集,还能找出这些项集之间数量上的相互关系。  相似文献   

13.
一种基于约简概念格的关联规则快速求解算法   总被引:2,自引:2,他引:2  
关联规则挖掘是数据挖掘领域中重要的研究分支,已形成了较多的研究成果。然而,大多数基于频繁项集求解关联规则的挖掘算法需要多次扫描数据库。该文提出了一种基于概念格的关联规则快速求解算法,该算法仅需一次扫描数据库即可确定所有的频繁项集并且进而能够快速求解出关联规则。文章首先讨论了约简概念格(RECL)的构造原理,并详细描述了基于RECL的关联规则的挖掘算法,最后以实验证明了算法的正确性和优越性。  相似文献   

14.
关联规则的发现是整个数据挖掘课题中的重要组成部分。在归纳现有关联规则研究的基础上提出了事务间数值型关联规则的数据挖掘问题,并对该问题进行了定义。应用模糊理论和相关的数据挖掘技术,提出了解决该问题的E—QA算法,并以实例对算法可行性进行验证,指出了算法存在的一些问题以及今后解决这些问题的思路。  相似文献   

15.
一种新的模糊加权关联规则挖掘算法   总被引:2,自引:2,他引:2       下载免费PDF全文
杜北  李伟华  史豪斌 《计算机工程》2008,34(20):218-220
为了提高关联规则挖掘算法处理大数据集的性能,提出一种新的模糊加权关联规则挖掘算法——FWAR算法。通过建立模糊加权关联规则模型生成候选项目集,并进行剪枝,新建的模型按权值对项目进行排序,符合向下封闭性,并解决了已有挖掘算法计算量大的问题。仿真结果证明通过该算法得到解的质量和计算速度有显著的提高。  相似文献   

16.
基于数值属性的关联规则挖掘算法   总被引:7,自引:0,他引:7  
关联规则的挖掘是一个重要的数据挖掘问题。目前的算法主要是研究支持—信任框架理论的关联规则挖掘,基于支持—信任理论的关联规则挖掘布尔型描述的数据已经比较成熟,但是现实的数据库中有许多数值属性的数据,从这些数据中挖掘潜在的规则,经典的关联规则方法(Apriori)就显得力不从心了。这里介绍将数值数据映射到二维空间,利用基于密度分布函数的聚类分析方法将数值属性区间分段,并在此基础上挖掘容易理解并且具有概括性和有效的数值属性关联规则。  相似文献   

17.
基于确信因子的有效关联规则挖掘   总被引:1,自引:0,他引:1  
通过对现有的关联规则算法分析与研究发现,生成的关联规则具有相大的冗余性,且可能是无趣的,甚至是虚假的,为此人们主要提出了兴趣度作为有效规则评判标准。该文在先前研究的基础上,以确信因子为基础,提出确信度来使规则的有效性判断更加客观、合理。同时在算法中引入规则取舍,提高了挖掘有效规则的效率。  相似文献   

18.
基于免疫算法的多维关联规则挖掘方法   总被引:1,自引:0,他引:1  
关联规则挖掘是一个重要的数据挖掘问题,文章给出了一种基于免疫算法的多维关联规则挖掘算法,算法充分利用了免疫记忆特性,把挖掘的关联规则存入记忆库,加快了关联规则的挖掘速度。实验结果表明该算法具有较好的鲁棒性,能快速、有效地进行全局优化搜索。特别适用于大规模、海量数据库的挖掘。  相似文献   

19.
关联规则挖掘是发现大量数据中项集之间有趣的关联或相关联系的技术方法,关联规则挖掘Apriori算法需要多次扫描数据库,时空复杂度过高。针对该算法的局限性,本文提出了基于项编码的关联规则挖掘算法CA(Coding-based Apriori),只需要第一遍扫描数据库并对每个项完成编码,以后的过程都是针对编码进行,不需要多次扫描数据库。相同条件下的实验结果表明,优化后的算法能有效地提高关联规则挖掘的效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号