首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
宋琼  孙颖  吴蓁 《上海涂料》2012,50(9):16-18
研究了改性环氧树脂的固化、稀释增韧效果。探讨了不同种类的固化剂及活性稀释剂对改性环氧树脂的冲击强度、拉伸强度及维卡软化点等性能的影响。研究结果表明,在固化剂9032和活性稀释剂的共同作用下,能制得室温固化型增韧环氧树脂,且其具有较高的强度和耐热性。  相似文献   

2.
选择具有设计结构的固化剂和活性稀释剂,并研究其对体系性能的影响,确定了室温固化耐高温低黏度双酚F环氧树脂配方体系。该体系黏度低,凝胶时间较长,耐热性良好,力学性能优异。固化产物的T_g可达110℃以上,拉伸强度可达90 MPa,弯曲强度可达150 MPa。能够很好地适用于低温固化,中、高温使用的树脂基复合材料成型技术。  相似文献   

3.
新型环氧树脂增韧稀释剂的性能研究   总被引:4,自引:0,他引:4  
采用国产669环氧稀释剂与聚氨酯预聚物反应合成了含有端环氧基聚醚氨酯的环氧树脂增韧稀释剂(U669)。将该化合物与环氧树脂(E51)共混,并分别采用氰乙基化己二胺和593#固化,通过力学性能测试,研究了U669含量对固化物性能的影响,并采用扫描电镜观察了断面微观结构。结果发现:其固化物具有海岛结构;2种固化体系的剪切强度在E51/U669质量比为60/40时达到极值,分别为21.91MPa和16.21MPa;采用593#作固化剂,在E51/U669质量比为80/20时,共混固化物的拉伸强度和弯曲强度达到最大值62.63MPa和97.37MPa;采用氰乙基化己二胺固化的体系的断裂伸长率和冲击性较593#固化体系好,其最大断裂伸长率达120.98%,当U669质量分数大于50%时,固化物具有弹性体的特征。  相似文献   

4.
考察了固化剂、稀释剂、固化促进剂等对环氧树脂体系注浆材料的固化特性和力学性能的影响,确定了新型注浆材料最佳的组成体系与配比。结果表明:固化剂T-31体系比固化剂593具有更好的综合性能,固化剂T-31、稀释剂AGE和固化促进剂DMP-30的最佳用量分别为70pHr,20pHr和3pHr。经注浆模拟实验证实,该注浆材料可明显改善其力学性能,抗弯拉强度可达4.51MPa,抗压强度可达14.7kN。  相似文献   

5.
杨卫朋  宁荣昌  郝壮  明璐 《塑料工业》2012,40(12):120-123,132
用一种新的耐热型环氧树脂JEh-031研究了一种室温固化体系,通过凝胶化时间的测定和示差扫描量热仪(DSC)对固化体系的热性能和力学性能进行了研究;研究了活性稀释剂对浇铸体性能和玻璃纤维增强复合材料性能的影响。结果表明,添加4 phr固化剂(GH-3)时,该固化体系在室温(25℃)下凝胶化时间为10 h;力学性能优异,拉伸强度91.4 MPa,拉伸模量4.0 GPa,弯曲强度176.9 MPa,弯曲模量3.5 GPa;玻璃化转变温度(Tg)144.7℃;添加5 phr活性稀释剂,复合材料的弯曲强度1 322.5 MPa,提高了39.3%,层间剪切强度69.3 MPa,提高了23.1%。  相似文献   

6.
将593脂肪胺固化剂、脂环胺固化剂、芳香胺固化剂及咪唑类固化剂复配,并加入促进剂DMP-30及活性稀释剂苯基缩水甘油醚与E-51环氧树脂构成了快速固化环氧树脂体系,测试了不同固化体系的凝胶时间和完全固化时间及其浇注体的力学性能。结果表明,在10 min内完全固化的情况下,E-51、芳香胺及咪唑固化剂的质量比为100∶15∶5时,固化体系的拉伸强度可达到67 MPa,较脂肪胺体系提高20%,弯曲强度和冲击强度分别达到88 MPa和11 kJ/m2,较单一胺类固化体系提高50%和40%。  相似文献   

7.
用红外光谱法表征了4种聚酰胺固化剂与环氧树脂按等当量配比,在一定条件下的固化反应过程。DSC法测定了其固化反应活性。桐马聚酰胺/环氧树脂固化体系较聚酰胺650/环氧树脂固化体系的固化活性大大提高,同时测定了该固化产物的热失重(TG)及玻璃化温度(Tg),对该固化物的热稳定性进行了评价,还测定了不同固化时间的剪切强度以研究其动态力学性能,从浇铸体的冲击强度方面比较其韧性。综合比较分析了聚酰胺固化剂与环氧树脂固化体系的力学性能、耐热性、电绝缘性等。结果表明:桐马聚酰胺Ⅲ型固化剂具有黏度低、粘接强度大、耐热性好、力学性能优等优点。  相似文献   

8.
杨双春  赵慧燕  刘晓旭  潘一* 《当代化工》2012,(10):1085-1086,1097
介绍了环氧树脂的优良特性以及改性环氧树脂的一些方向,分别介绍了环氧树脂的直接改性、固化体系改性、稀释剂改性的研究进展。详细陈述了添加橡胶弹性体、有机硅、有机纤维、纳米氧化物粉体、室温柔性固化剂、含磷同化剂、环氧丙烷苄基醚稀释剂、CMP410、硅氧烷活性稀释剂改性环氧树脂的原理。对改性环氧树脂的存在问题进行分析,展望改性环氧树脂未来的研究方向。  相似文献   

9.
以糠醛(F)和丙酮(A)作为环氧树脂的活性稀释剂,分别用二乙烯三胺(DETA)、酚醛胺固化剂T-31、改性胺固化剂593等作为环氧树脂固化剂,2,4,6-三(二甲氨基甲基)苯酚(DMP-30)、三乙醇胺(TEOA)、2-乙基-4-甲基咪唑(EMI)等作为环氧树脂的固化促进剂,制备了糠醛丙酮改性环氧树脂体系涂料。考察了糠醛丙酮的配比、固化剂、稀释剂、固化促进剂等对环氧树脂涂料的固化特性和力学性能的影响,确定了各改性环氧树脂涂料最佳的组成体系与配比。实验结果表明:糠醛丙酮的不同配比、不同促进剂或固化剂种类及用量对涂料的固化性能以及力学性能具有显著的影响,改变促进剂或固化剂种类及用量可以调节涂料的初凝时间、力学性能等。  相似文献   

10.
利用活性稀释剂在常温常压下合成了无气泡的环氧树脂浇铸体,测试了浇铸体的冲击、弯曲和压缩等力学性能,对环氧树脂的环氧值凝胶时间和固化配方进行了研究。结果表明:采用活性稀释剂配制的环氧—乙二胺固化体系有较好的常温固化性能,可用于常温固化粘合剂及物体表面防腐,通过纤维增强改性提高力学性能,可用于工程材料  相似文献   

11.
适用于低温固化的低黏度高强度环氧树脂结构胶   总被引:1,自引:1,他引:0  
以碳酸丙烯酯(PC)为活性稀释剂、自制增韧型421固化剂/快固型DETA(二乙烯三胺)固化剂作为复合固化剂,制备环氧树脂(EP)结构胶。研究结果表明:当m(EP)∶m(PC)∶m(421)∶m(DETA)=100∶20∶24∶6.0时,EP结构胶的初始黏度(60 mPa.s)相对较低,其强度和韧性俱佳(拉伸强度为45 MPa、压缩强度为70 MPa和钢/钢剪切强度为12.0 MPa);该EP结构胶可低温固化(5℃或常温固化7 d后的拉伸强度基本一致),也是一款适用于冬季施工的低黏度高强度EP结构胶。  相似文献   

12.
A new curing agent based on palmitoleic acid methyl ester modified amine (PAMEA) for epoxy resin was synthesized and characterized. Diglycidyl ether of bisphenol A (DGEBA) epoxy resins cured with different content of PAMEA along with diethylenetriamine (DETA) were prepared. The mechanical properties, dynamic mechanical properties, thermal properties, and morphology were investigated. The results indicated that the PAMEA curing agent can improve the impact strength of the cured epoxy resins considerably in comparison with the DETA curing agent, while the modulus and strength of the cured resin can also be improved slightly. When the PAMEA/epoxy resin weight ratio is 30/100, the comprehensive mechanical properties of the cured epoxy resin are optimal; at the same time, the crosslinking density and glass transition temperature of the cured epoxy resin are maximal.  相似文献   

13.
Characteristics of epoxy resin cured with in situ polymerized curing agent   总被引:3,自引:0,他引:3  
K. Mimura  H. Ito 《Polymer》2002,43(26):7559-7566
In order to improve the heat resistance of a cured epoxy resin together with reducing the viscosity of the resin composition, an epoxy resin was cured with a curing agent formed from the radical copolymerization of vinyl monomers during the cure process of the epoxy resin. N-phenylmaleimide and p-acetoxystyrene were used as vinyl monomers of the curing agent. The epoxy resin was cured by the insertion reaction of the ester group of the in situ polymerized curing agent and the epoxy group of the epoxy resin. In the cure system of the epoxy and the phenol resins, reduction of the viscosity of the resin composition was achieved by replacing some or all of the phenol resin with these monomers. When all phenol resins were replaced by these monomers, the viscosity of resin composition (0.01 Pa s at 70 °C) decreased by about 1/2000 compared with that of the system with only phenol resin (21 Pa s at 70 °C). The glass transition temperature (Tg) of the cured resin with no phenols was 174 °C, an improvement of 17 °C compared with that of the system cured with only phenol resin. The flexural strength of the new resins remained unchanged.  相似文献   

14.
针对兆瓦级风机叶片用纤维/环氧复合材料的特殊要求,开展了适用于真空辅助灌注(VARTM)工艺的环氧基体树脂的国产化研究。采用国产环氧树脂与实验室自制的稀释剂制备环氧树脂与胺类固化剂配合使用,通过示差扫描量热分析,IR光谱,力学性能,耐热性、粘度及吸水性测试等研究了环氧树脂与固化剂配比对其工艺和固化物性能的影响,获得了初始粘度低、粘度对温度不敏感、操作时间长的环氧基体树脂,其树脂浇注体的拉伸性能、弯曲性能均优于国外环氧树脂固化体系,可满足兆瓦级风机叶片用高性能复合材料的使用需求。  相似文献   

15.
以兼具引发剂和稀释剂功能的自制BH-1为固化剂,通过引入低黏度活性稀释剂,制备室温固化EP(环氧树脂)胶粘剂;然后以EP/BH-1/活性稀释剂为基体、单向玻璃纤维为增强材料,制备相应的复合材料。研究结果表明:当w(BH-1)=4%时,EP浇铸体的室温(25℃)凝胶时间约为8.5 h和玻璃化转变温度(Tg)为130.9℃,并具有优异的力学性能,其冲击强度为50.0 kJ/m2、拉伸强度和模量分别为0.075 GPa和2.80 GPa、弯曲强度和模量分别为0.136 GPa和3.02 GPa;当m(EP)∶m(BH-1)∶m(活性稀释剂)=100∶4∶10时,复合材料的弯曲强度(0.984 GPa)和层间剪切强度(56.1 MPa)分别提高了26.4%和15.2%。  相似文献   

16.
Taguchi method (orthogonal array, OA9) was used to design an epoxy insulator by evaluating its glass transition temperature (T g) for using in a double base (DB) propellant grain. In this design method, three epoxy resins based on diglycidylether bisphenol A (DGEBA), three polyamine curing agents and a DGEBA-based reactive diluent agent were used. The curing process of epoxy resins with polyamines was studied by Fourier transform infrared spectroscopy. The results showed that the curing process was completed at room temperature. The effects of four parameters including resin type, curing agent type, curing agent concentration and diluent quantity were investigated to design a resin formulation with a highest T g after curing. The obtained results were quantitatively evaluated by the analysis of variance (ANOVA). The results of ANOVA showed that the highest T g of 86.0 ± 9.0 °C was obtained for the optimum formulation of MANA POX-95 as epoxy resin, H-30 as curing agent and 52 phr H-30. The T g measured by the experiment was 78.0 ± 0.9 °C. In addition, the single lap shear strength (adhesion strength) of the optimized insulator was measured at 13.66 ± 1.02 MPa. Pull-off test performed on the surface of DB propellant resulted a 1.935 ± 0.003 MPa adhesion strength.  相似文献   

17.
高性能环氧树脂基体的发展   总被引:6,自引:2,他引:4  
焦剑  蓝立文  狄西岩 《粘接》2000,21(2):33-39
综述了高性能环氧树脂的制备方法和性能。介绍了几种高性能的环氧树脂固化体系 ,新型的耐湿热性的环氧树脂 ,氰酸酯改性环氧树脂 ,液晶环氧树脂 ,双马来酰亚胺改性环氧树脂等  相似文献   

18.
采用不同分子量的聚乙二醇与液体环氧树脂EPON828合成反应型乳化剂,然后将反应型乳化剂链段引入到以液体环氧树脂EPON828与间苯二甲胺为原料合成的端胺基中间体的分子结构中,再用活性稀释剂进行封端,最后加水分散,制得水性环氧固化剂分散体。采用了γ-氨丙基三乙氧基硅烷(即硅烷偶联剂KH-550)对其进行改性。确定了间苯二甲胺与环氧树脂EPON828的摩尔比为2.2∶1,聚乙二醇6000与环氧树脂EPON828(摩尔比为1∶1)制备的反应型乳化剂用量为9%,硅烷偶联剂KH-550的用量为固化剂分散体的质量的2%时,所制备的水性环氧固化剂分散体稳定性最佳,其粒径为750.8nm,固含量约60%,胺值为118mgKOH/g,黏度为4500mPa·s。室温固化后,涂膜硬度为3H,光泽度(60°)为108%,冲击强度50kg·cm,柔韧性1mm,附着力1级,耐酸碱腐蚀性能好。通过傅立叶变换红外光谱表征了反应产物。  相似文献   

19.
To improve the high-temperature mechanical properties of room temperature cured epoxy resin, a mixed curing agent was used and the curing process was studied under a temperature ramp. The tests including gelation time, differential scanning calorimetry, dynamic thermomechanical analysis, and flexural strength were taken to evaluate the changes in pot life, reaction process, heat resistance, and mechanical properties, respectively. The analysis then focused on the extent of cure. Meanwhile, the effects of non-reactive diluent on the curing process and product properties were analyzed. Results showed that the resin system containing the mixed curing agent possessed an exquisite characteristic when the temperature rose slowly to 363 or 393 K. The system could be preliminarily solidified in an hour and a half at normal temperature, and then in the heating-up environment, curing reactions initiated by different types of curing agents took place, caused the curing degree to exhibit certain gradient and increase to greater than 95% quickly. The glass transition temperature and the mechanical stability at high testing temperatures of the cured products were therefore improved. When dibutyl sebacate was added into the system as the diluent, the curing reaction was postponed, the curing degree was slightly increased; however, the glass transition temperature and mechanical properties at high temperatures were apparently decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号