共查询到18条相似文献,搜索用时 46 毫秒
1.
为了实现城市可持续发展,城市需水量预测极为重要。针对目前常用的灰色预测方法,从建模机理出发,指出了灰色建模中存在的不足。本文将人工神经网络原理引入城市需水量预测中,并针对BP网络收敛速度慢、易陷入局部极小的缺陷,提出了基于GA和BP的预测模型,实例研究表明该模型是一种行之有效的城市需水量预测模型。 相似文献
2.
3.
用灰色模型对四川省资阳市2010、2015、2020年的需水量进行了预测,得出需水量分别为2 282.0、2 834.6、3 235.3万m3。对预测结果的精度校验表明,模型的预测精度等级为一级。 相似文献
4.
5.
我国的水资源利用问题日趋严峻。作为影响水资源承载力的重要因素,社会经济活动对水资源的影响尤为明显。通过分析影响水资源承载力的社会经济驱动要素,建立主成分回归模型,分析得出影响江苏省水资源承载力变化的三个驱动力以及驱动力影响度,利用三个驱动力中的6个重要驱动因子,建立灰色神经网络预测模型,预测出江苏省2012-2013年的年需水量。结果表明:预测模型精度较高,最后结合江苏省发展现状提出相关的政策性建议。 相似文献
6.
7.
基于模糊神经网络的区域需水预测计算模型 总被引:4,自引:0,他引:4
将神经网络和模糊理论相结合建立模糊神经网络模型,从模糊神经网络角度并运用灰色系统理论对区域需水量进行预测,通过应用于盐城市在未来2010年需水预测的实例,计算分析结果表明该模型具有良好的可行性和合理性,可以借此深人分析外生变量与区域需水量之间的关系。 相似文献
8.
在调查新郑市水资源供需状况的基础上,从灰色系统理论的特点与需水量本身的变化规律出发,利用该理论建立了城市需水量灰色预测模型,对新郑市2010、2011、2012年的需水量进行了预测,得出需水量分别为15368.4万m3、16113.2万m3和16987.5万m3.结果表明此模型精度较高、预测误差较小,可以真实地代表实际系统,从而使原始数据资料能反映未来需水量的实际变化特性,适合于对城市需水量进行预测.该预测结果为规划建成节水型城市,以水资源的可持续利用实现社会经济的可持续发展提供战略对策. 相似文献
9.
针对城市需水量影响因子多、BP神经网络收敛速度慢、精度低、易陷入局部最优等问题,提出灰色关联分析、思维进化算法、BP神经网络三者耦合的改进预测模型,利用灰色关联分析(GRA)筛选需水量主要影响因子,采用全局搜索能力极强的思维进化算法(MEA)优化BP神经网络的权值和阈值,从而构建GRA-MEA-BP耦合需水预测模型,同时建立BP神经网络模型作为对比。实例应用结果表明,GRA-MEA-BP耦合模型具有更高的预测精度和预测速度,可作为一种有效的需水预测模型。 相似文献
10.
灰色系统理论在城市需水量预测中的应用 总被引:10,自引:0,他引:10
针对城市需水量特点、运用了具有适用性广,预测准确率高等优点的灰色系统预测模型并对该模型的精度进行了检验。最后用实例验证了该模型用于预测城市需水量的可行性及有效性。 相似文献
11.
针对单一神经网络模型预测误差波动大、精度不高等问题,提出基于SVM、BP和Elman神经网络基本模型的加权平均集成需水预测模型。首先,利用相关分析和ADF单位根检验,选取需水预测主要影响因子。为避免模型过度拟合,引入虚拟维,并针对BP、Elman神经网络标准算法收敛速度慢、易陷入局部极值的不足,采用自适应动量算法改进BP和Elman神经网络标准算法,依次构建SVM、BP和Elman需水预测单一模型,并对上海市2002—2011年需水量进行预测;最后,基于加权平均方法对各单一模型预测结果进行综合集成。结果表明:利用加权平均集成模型对上海市2002—2011年需水量进行预测的平均相对误差绝对值为1.8004%,最大相对误差绝对值为3.6995%,精度和泛化能力均大幅优于各单一模型。说明本研究建立的加权平均集成模型用于需水预测是合理可行和有效的,它综合了各单一模型的优点,有效避免了单一模型预测误差过大和不稳定的缺点,具有预测精度高、泛化能力强、误差变化幅度不大等特点。 相似文献
12.
将神经网络和模糊理论相结合建立模糊神经网络模型,从模糊神经网络角度并运用灰色系统理论对区域需水量进行预测,通过应用于盐城市在未来2010年需水预测的实例,计算分析结果表明该模型具有良好的可行性和合理性,可以借此深入分析外生变量与区域需水量之间的关系。 相似文献
13.
14.
15.
利用宁夏2000-2010年的需水量数据,提取了人口数、GDP、工业总产值和降水量为主要影响因子,采用主成分分析法对影响水资源需求量的8个因子进行了分析。将此作为输入样本构建BP神经网络模型,用训练测试好的神经网络对2011和2012年水资源需求量进行了预测,预测结果为宁夏水资源规划管理提供参考。 相似文献
16.
城市需水量预测是生态城市规划与管理的基础,但受诸多不确定因素影响,是一个复杂的预测难题。为能定量统一表达预测年份需水量各影响因素间及与历史数据间的交叉、交融的确定和不确定关系,在此应用有序聚类理论与集对分析的耦合方法,提出了基于联系隶属度概念的城市需水量预测模型。该模型首先基于城市需水量历史数据进行最优分割聚类,应用联系隶属度对预测年份需水量的影响因子与历史数据关系进行同异反分析,并构建相似模型预测相应年份的城市需水量。实例应用及与其他方法对比的结果表明,该模型应用于城市需水预测是有效可行的。 相似文献
17.
水资源预测是城市安全用水的基础保障,而校园用水预测是城市用水规划和管理的组成部分。针对校园用水受很多因素影响产生的不确定性,提出了基于灰色遗传BP神经的校园用水预测模型。模型对校园用水的数据进行灰色关联分析,并加入遗传算法去优化BP神经网络,经过残差计算,输出区间的预测值。运用该模型可以充分提取小样本信息,解决神经网络无法自动寻优的问题。通过Matlab对校园的用水区间数据进行仿真,得出的结果显示,预测的数据和实际数据基本吻合,其仿真精度可以达到90. 32%,验证了该方法的可行性,此预测方法有一定的借鉴意义。 相似文献
18.
基于BP神经网络的义乌市水资源需求量预测 总被引:3,自引:0,他引:3
针对区域水资源需求量的预测问题,由影响义乌市水资源需求量变化的三类影响因子——经济发展与水资源量不协调因素、人口因素和水环境破坏因素三类入手,运用BP神经网络模型对该区域水资源需求量进行预测,通过网络学习训练得出义乌市2010年水资源需求量为2.684103×108m3。其结果可为政府决策者制定与水资源相协调的区域发展规划提供一定的参考。 相似文献