首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The colonization of an implant surface by bacteria is an extremely important medical problem, which often leads to the failure of medical devices. Modern surface modification techniques, such as ion implantation, can confer to the surfaces very different properties from those of the bulk underlying material. In this work, austenitic stainless steel 316 LVM has been superficially modified by Si+ ion implantation. The effect of surface modification on the biocompatibility and bacterial adhesion to 316 LVM stainless steel has been investigated. To this aim, human mesenchymal stem cells (hMSCs), as precursor of osteoblastic cells, and bacterial strains relevant in infections related to orthopedic implants, i.e., Staphylococcus aureus and Staphylococcus epidermidis, have been assayed. For the understanding of changes in the biological response associated to ion implantation, variations in the chemical surface composition, topography, surface Gibbs energy, isoelectric point and in vitro corrosion behavior have been evaluated. hMSCs adhesion, viability and differentiation to the osteoblastic lineage were unaffected by Si+ ion implantation. On the other hand, Si+ ion implantation diminished the number of attached bacteria in static conditions and led to smaller adhesion rates and retention strength. The ability of implanted surfaces to reduce the bacterial adhesion was higher for Staphylococcus epidermidis than for Staphylococcus aureus. This study proposes Si+ ion implantation as an effective way of reducing bacterial adhesion on 316 LVM stainless steel surfaces without compromising its good biocompatibility.  相似文献   

2.
Silicon ion implantation effects on the optical and photoluminescence (PL) properties of polymethyl–methacrylate (PMMA) have been studied. Low-energy ion implantation (E = 30–50 keV) was carried out over a range of different ion fluences (D = 1013–1017 cm?2). Visible PL and optical transmission spectra in the range (330–800 nm) have been measured. The existing visible range PL emission in the unimplanted PMMA samples is clearly affected by the Si+ ion implantation and the observed modification effect of photoluminescence enhancement (PLE) is essentially dependent on the implantation fluence. For certain fluences, dependent on the ion energy, the overall amplitude of the PL emission has a several times (~5 times) increase. Optical absorption also gradually increases with the fluence.  相似文献   

3.
Ion Bombardment of Polymers for Biomedical Applications Ion implantation, a standard technology in the semiconductor industry, is also used since the 1960s for biomaterials. In the following, a variation of the method is presented for illustrative — plasma immersion ion implantation (PIII). In PIII treatments process times of less than a minute are found to be sufficient to change the surface energy at least for several weeks. In addition, a modified coefficient of friction, wear and topography can be obtained, with reduced wear rates and an increased roughness having a positive impact on the biocompatibility and the bioactivity. For combined coating and implantation processes with simultaneous energetic ion bombardment, an excellent adhesion is obtained even at room temperature. In addition to the formation of photo‐active surfaces, which may have an antibacterial effect here also an osteoinductive topography can be achieved.  相似文献   

4.
Heat treatment of polyacrylonitrile (PAN) leads to products with semiconductor-to-metal range of conductivities. The electrical properties of these materials are further modified by ion implantation. The conductivity, 1×10–7 (Ω cm)–1, of heat treated PAN at 435°C (PAN435) increases upon ion implantation with As+, Kr+, Cl+ or F+, reaching the maximum value of 8.9×10–1 (Ω cm)–1 at a dose of 5×1016 ion/cm2 and an energy of 200 KeV for the case of F+ implantation. On the other hand, ion implantation in the more conducting heat-treated PAN at 750 °C (PAN750) leads to a decrease in the electrical conductivity. It is shown that the conductivity modifications are primarily due to structural rearrangements induced by the energetic ions. Specific chemical doping contribution to conductivity is noted for halogen implantation in PAN435. The temperature dependence of conductivity of PAN heat treated at 750°C suggests a two path conduction, namely a three dimensional variable range hopping conduction and a metallic conduction. After ion implantation, the conductivity-temperature dependence is interpreted in terms of a variable range hopping conduction mechanism. Received: 25 August 2000 / Reviewed and accepted: 28 August 2000  相似文献   

5.
Ge nanocrystallites (Ge-nc) have been formed by ion implantation of Ge+74 into SiO2 matrix, thermally grown on p-type Si substrates. The Ge-nc are examined by Raman spectroscopy, photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The samples were prepared with various implantation doses [0.5; 0.8; 1; 2; 3; 4] × 1016 cm−2 with 250 keV energy. After implantation, the samples were annealed at 1,000 °C in forming gas atmosphere for 1 h. Raman intensity variation with implantation doses is observed, particularly for the peak near 304 cm−1. It was found that the sample implanted with a doses of 2 × 1016 cm−2 shows maximum photoluminescence intensity at about 3.2 eV. FTIR analysis shows that the SiO2 film moved off stoichiometry due to Ge+74 ion implantation, and Ge oxides are formed in it. This result is shown as a reduction of GeOx at exactly the doses corresponding to the maximum blue-violet PL emission and the largest Raman emission at 304 cm−1. This intensity reduction can be attributed to a larger portion of broken Ge–O bonds enabling a greater number of Ge atoms to participate in the cluster formation and at the same time increasing the oxygen vacancies. This idea would explain why the FTIR peak decreases at the same implantation doses where the PL intensity increases.  相似文献   

6.
This article reports on the influence of the ion energy on the damage induced by Au-ion implantation in silicon carbide single crystals. 6H-SiC samples were implanted with Au ions at room temperature at two different energies: 4 and 20 MeV. Both Rutherford Backscattering spectrometry in channelling geometry (RBS/C) and Raman spectroscopy were used to probe the ion implantation-induced damage. Results show that the accumulated damage increases with the fluence up to the amorphization state. RBS/C data indicate that 4-MeV implantation induces more damage than 20-MeV implantation at a given fluence. This effect is attributed to nuclear collisions since the amount of damage is identical at 4 or 20 MeV when the fluence is rescaled in dpa. Surprisingly, Raman data detect more damage for 20-MeV implantation than for 4-MeV implantation at low fluence (below 1013 cm−2) where point defects are likely formed.  相似文献   

7.
Abstract

The electrocatalytic activity of titanium induced by ion implantation has been investigated. Ion implantation was carried out using a metal vapour vacuum arc source ion implanter at room temperature. Nickel ion implantation was followed by molybdenum ion implantation at doses ranging from 1 × 1016 to 1 × 1017 ions/cm2 at the same average extracting voltage of 45 kV. The concentration profiles of Ni and Mo ions in the near surface were detected by electron probe microanalysis and X-ray photoelectron spectroscopy. The catalytic behaviour of implanted titanium was determined by an electrochemical method. Potential versus current density curves for the cathodic hydrogen evolution reaction indicated that Ni and Mo ions implanted into titanium electrodes resulted in a low hydrogen overvoltage of 110-180 mV (at a current density of 200-400 mA cm-2 in 30 wt-%KOH at 25°C) and excellent stability. The electrocatalytic activity induced by ion implantation can be explained provisionally by interactions between Ni and Mo ions and the titanium substrate.  相似文献   

8.
Defect formation processes in silicon implanted with ∼1 MeV/nucleon boron, oxygen, and argon ions have been studied using microhardness and Hall effect measurements. The results indicate that ion implantation increases the surface strength of silicon single crystals owing to the formation of electrically inactive interstitials through the diffusion of self-interstitials from the implantation-damaged layer to the silicon surface. The radiation-induced surface hardening depends significantly on the nature of the ion, its energy, and the implant dose. In the case of low-Z (boron) ion implantation, the effect had a maximum at an implant dose of ∼5 × 1014 cm−2, whereas that for O+ and Ar+ ions showed no saturation even at the highest dose reached, 1 × 1016 cm−2. When the ion energy was increased to ∼3 MeV/nucleon (210-MeV Kr+ ion implantation), we observed an opposite effect, surface strength loss, due to the predominant generation of vacancy-type defects.  相似文献   

9.
Abstract

We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance.  相似文献   

10.
本文对注N、注F的SIMOX/NMOSFET器件的抗辐射特性进行了研究,发现两者都能减少埋氧层及其界面的空穴陷阱,对辐射加固有所改善,特别是对大剂量辐射的加固更为明显.总体来说,在此能量下,离子注入剂量越大,加固越好.由于注入的剂量对片子本身的阈值电压有很大影响,所以选择对于器件初始特性影响较小的剂量及能量非常重要.  相似文献   

11.
Polypropylene was implanted with 100 keV titanium and silver ions to fluences of 1, 10 and 50×1019 ions m–2 using a vacuum arc metal-ion source. The implanted specimens were tested for sliding reciprocating wear properties using a nylon counterface, 1 N normal load, 3 mm stroke length and 10000 sliding cycles. The results of the wear tests showed that there was a dramatic improvement in wear properties for the 50×1019 ions m–2 titanium-implanted specimen, to the point that no wear damage was visibly evident after 10000 cycles. A similar wear improvement was not obtained for the lower fluences for titanium implantation or for the silver-implanted specimens. The improvement in wear properties was related to the mechanisms of linear energy transfer from the incident ions to the polypropylene substrate, and consequent effects on cross-linking, which is responsible for changes in properties. The linear energy transfer was quantified using Monte Carlo calculations. In addition, friction coefficient values were also correlated with the wear test results. The significance of high fluences for wear improvements by ion implantation was demonstrated in this study. The investigation showed that metal-ion implantation can be effective in significantly improving wear properties of polymers with a judicious choice of ion type and ion fluence.  相似文献   

12.
A combination of shape memory characteristics, pseudoelasticity, and good damping properties make near-equiatomic nickel–titanium (Ni–Ti) alloy a desirable candidate material for certain biomedical device applications. The alloy has moderately good wear resistance, however, further improvements in this regard would be beneficial from the perspective of reducing wear debris generation, improving biocompatibility, and preventing failure during service. Fretting wear tests of Ni–Ti in both austenitic and martensitic microstructural conditions were performed with the goal of simulating wear which medical devices such as stents may experience during surgical implantation or service. The tests were performed using a stainless steel stylus counter-wearing surface under dry conditions and also with artificial plasma containing 80 g/L albumen protein as lubricant. Additionally, the research explores the feasibility of surface modification by sequential ion implantation with argon and oxygen to enhance the wear characteristics of the Ni–Ti alloy. Each of these implantations was performed to a dose of 3 × 1017 atom/cm2 and an energy of 50 kV, using the plasma source ion implantation process. Improvements in wear resistance were observed for the austenitic samples implanted with argon and oxygen. Ion implantation with argon also reduced the surface Ni content with respect to Ti due to differential sputtering rates of the two elements, an effect that points toward improved biocompatibility.  相似文献   

13.
Manganin gauge produced by Dynasen Corp (USA) in the form of planar structure of 2.5 μm thick and the nominal resistance of 20 Ω was investigated. The open surface of the gauge was implanted with 60 keV Ti ions at the fluence of 1016 ion/cm2 and then with 250 MeV Kr ions at the ion fluence of 1013 Kr ion/cm2. For Ti implantation the TRIM computer program (Transport of Ions in Matter) gives the maximum penetration range of about 50 nm. For high energy Kr ion implantation a special protection foil of 13 μm thick was used. The TRIM method of calculation gives information that Kr ions are located with the approximately constant density of 0.4 × 1019 Kr ions/cm3 all over the volume of the samples. The authors assumed that during Kr implantation Ti atoms moved into manganin up to a 0.5 μm depth. The temperature dependencies of electrical resistance of pure and implanted gauges were studied in the temperature range 20–220 °C. Using the modelling procedure for deeper interpretation of implanted foils with a layered structure, described in detail earlier by authors [5], one can calculate that the resistivity of mixed ion implantation volume decreases by about 40%. That means strong influence of Ti ions on conductivity of manganin. One can see that RT (resistance–temperature) characteristic of gauge in the room temperature vicinity is improved in large measure. According to our data concentration of Ti ions in manganin is of the order of 2 × 1022 Ti ions/cm3.  相似文献   

14.
M.S. Rafique 《Vacuum》2007,81(9):1062-1067
Commercially graded SiC samples were implanted with 250 keV germanium ions (Ge+) at room temperature. For Ge+ ions source, laser-induced plasma (LIP) technique was used. Ge+ implantation was confirmed by energy dispersive X-ray (EDX) analysis. Change in FWHM and lattice constant of SiC samples has been observed after the Ge implantation, calculated by Bragg's law from XRD analysis. A comparison of the electrical and optical properties of SiC before and after Ge+ implantation (SiC:Ge) has also been made. Electrical diagnostic comprises of a four-probe method for the measurement of resistivity whereas Raman spectroscopy is employed for the optical investigation. Resistivity measurements of SiC and SiC:Ge samples showed that resistivity decreases as Ge+ implantation increases. Raman spectroscopy of the SiC and SiC:Ge showed that Raman band became broadened and is shifted towards the lower wave number with the increase in Ge ion fluence. The increase in Ge ions fluence enhances the lattice defects which are responsible for broadening in XRD and Raman peaks as well as increase in conductivity of the samples.  相似文献   

15.
Si+ and N+ ion implantation into medical poly(methyl methacrylate) (PMMA) were performed at an energy of 80 keV with fluences ranging from 5×1012 to 5×1015 ions/cm2 at room temperature to improve blood compatibility. The results of the blood contacting measurementsin vitro showed that the anticoagulability and anticalcific behaviour on the surface morphology were enhanced after ion implantation. No appreciable change in the surface morphology was detected by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) analysis indicated that ion implantation broke some original chemical bonds on the surface to form some new Si- and N-containing groups. These results were considered responsible for the enhancement in the blood compatibility of PMMA.  相似文献   

16.
Biomedical grade (>99.97% purity) alumina, zirconia and zirconia-toughened-alumina (ZTA) have been implanted with carbon ions at a dose of 5 × 1017 C ions/cm2 using an ion energy of 75 keV. The near-surface hardness of these bioceramics was examined using a load partial-unload indentation technique, both before and after implantation. The surfaces of the bioceramics have also been examined in cross-section using transmission electron microscopy (TEM) both before and after implantation and the implantation data correlated with a computer based simulation, TRIM (Transport and Range of Ions in Matter). The grinding and polishing treatment used prior to the implantation treatment has been found to have a strong influence on the surface microstructures for all three ceramics, although more significant modifications are brought about by carbon ion implantation. A comparison was made between the near-surface hardness of the unimplanted and carbon ion implanted surfaces of these bioceramics with relation to the modified microstructure. TEM examination of the implanted surfaces has demonstrated the formation of a sub-surface amorphous layer in all three materials as well as other microstructural modifications, such as microcracking and an increase in the near-surface dislocation density, that are characteristic of ion damage. The hardness data reveals that carbon ion implantation tends to decrease the surface hardness of alumina and zirconia with increasing ion dose, with a significant decrease occurring at the immediate near surface for both materials.  相似文献   

17.
The use a stabilized lithium structure as cathode material for batteries could be a fundamental alternative in the development of next-generation energy storage devices. However, the lithium structure severely limits battery life causes safety concerns due to the growth of lithium (Li) dendrites during rapid charge/discharge cycles. Solid electrolytes, which are used in high-density energy storage devices and avoid the instability of liquid electrolytes, can be a promising alternative for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, through the application of a low-dimensional graphene quantum dot (GQD) layer structure, stable operation characteristics were demonstrated based on Li+ ion conductivity and excellent electrochemical performance. Moreover, the device based on the modified graphene quantum dots (GQDs) in solid state exhibited retention properties of 95.3% for 100 cycles at 0.5 C and room temperature (RT). Transmission electron microscopy analysis was performed to elucidate the Li+ ion action mechanism in the modified GQD/electrolyte heterostructure. The low-dimensional structure of the GQD-based solid electrolyte has provided an important strategy for stably-scalable solid-state lithium battery applications at room temperature. It was demonstrated that lithiated graphene quantum dots (Li-GQDs) inhibit the growth of Li dendrites by regulating the modified Li+ ion flux during charge/discharge cycling at current densities of 2.2–5.5 mA cm, acting as a modified Li diffusion heterointerface. A full Li GQD-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li–GQD hetero-interface. This study indicates that the low-dimensional carbon structure in Li–GQDs can be an effective approach for stabilization of solid-state Li matrix architecture.  相似文献   

18.
Ge nanocrystal (nc-Ge) embedded SiO2 nanocomposite thin films have been synthesized with the ion implantation technique. The distribution profile of nc-Ge in the SiO2 matrix can be tailored by varying the implantation energy and dose in the Ge ion implantation process; thus the effective dielectric constant of the nc-Ge/SiO2 nanocomposite thin films can be engineered. The effective metal–oxide-semiconductor (MOS) capacitance of the nanocomposite thin films has been calculated using the sub-layer model and the Maxwell–Garnett effective medium approximation, taking the reduced dielectric constant corresponding to the nanometer size of nc-Ge into account. On the other hand, capacitance–voltage measurements on the MOS structures based on the nc-Ge/SiO2 thin films have been conducted to extract the capacitance experimentally. The modeling and measurement results have shown good agreement, suggesting that the nanocomposite dielectric engineering can be easily realized through the energy- and dose-controlled Ge+ implantation technique.  相似文献   

19.
Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double‐layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li3VO4 with low Li‐ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N‐doped carbon‐encapsulated Li3VO4 nanowires are synthesized through a morphology‐inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g?1 at 0.1 A g?1, excellent rate capability, and long‐term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge‐transfer, the Li3VO4/N‐doped carbon nanowires exhibit a high‐rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li3VO4/N‐doped carbon nanowires delivers a high energy density of 136.4 Wh kg?1 at a power density of 532 W kg?1, revealing the potential for application in high‐performance and long life energy storage devices.  相似文献   

20.
Aqueous ion–solid interfacial interactions at an electric double layer (EDL) are studied in various research fields. However, details of the interactions at the EDL are still not fully understood due to complexity induced from the specific conditions of the solid and liquid parts. Several technical tools for ion–solid interfacial probing are experimentally and practically proposed, but they still show limitations in applicability due to the complicated measurements. Recently, an energy conversion device based on ion dynamics (called ionovoltaic device) was also introduced as another monitoring tool for the EDL, showing applicability as a novel probing method for interfacial interactions. Herein, a monitoring technique for specific ion adsorption (Cu2+ and Pb2+ in the range of 5 × 10?6–1000 × 10?6m ) in the solid–liquid interface based on the ionovoltaic device is newly demonstrated. The specific ion adsorption and the corresponding interfacial potentials profiles are also investigated to elucidate a working mechanism of the device. The results give the insight of molecular‐level ion adsorption through macroscopic water‐motion‐induced electricity generation. The simple and cost‐effective detection of the device provides an innovative route for monitoring specific adsorption and expandability as a monitoring tool for various solid–liquid interfacial phenomena that are unrevealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号