首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths. It is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realize imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical contrast, is found to be ≈100 nm for light wavelengths in the visible region. We demonstrate imaging of near-field components of a dipole field and purely dielectric contrast (related to well-width fluctuations in a semiconductor quantum well) with a spatial resolution of ≈100 nm. The results obtained show that such a near-field technique can be used for polarization-sensitive imaging with reasonably high spatial resolution and suggest a number of applications for this technique.  相似文献   

2.
A near-field optical microscope has been developed for operation at low temperature. This microscope is used to study the photoluminescence of CdTe-based quantum dots. Spectra collected upon approaching the optical tip into the near-field region of the sample reveal the evolution from a broad far-field luminescence band − that is typical for a large ensemble of dots − to a near-field structure made up of a few sharp peaks originating from individual dots. Experiments carried out in the excitation-collection mode through the optical tip allow study of the effect of an increase in excitation power on the near-field spectra. It is found that upon increasing the excitation by two orders of magnitude, a spatially resolved spectrum progressively transforms back into a broad 'far-field-like' spectrum. Photoluminescence images taken by scanning the sample under the tip are used to discriminate various contributions coming from individual dots.  相似文献   

3.
A near-field scanning optical module has been constructed as an accessory for a Nanoscope IIIa commercial scanning probe microscope. Distance feedback and topographic registration are accomplished with an uncoated optical fibre scanning tip by implementation of the shear force technique. The tip is driven by a piezoelectric actuator at a resonance frequency of 8–80 kHz. A laser diode beam is scattered by the tip and detected by a split photodiode, with lock-in detection of the difference signal. The amplitude ( r ) and phase (τ) responses were characterized as a function of the calibrated tip–sample separation. Using an r cos τ feedback signal, imaging of pUC18 relaxed circular plasmid DNA spread on mica precoated with cetylpyridinium chloride was achieved. The apparent width (28 ± 5 nm) was approximately four times that achieved by scanning force measurements with the same instrument; the apparent height of the DNA (0.6 ± 0.3 nm) was similar with the two techniques. These results demonstrate the applicability of the shear force signal for imaging biological macromolecules according to topography and in conjunction with the optical signals of a near-field scanning optical microscope (NSOM).  相似文献   

4.
Using near-field techniques, we have developed an experimental set-up for spatially resolved cathodoluminescence (CL) spectroscopy and monochromatic imaging. It combines a scanning near-field optical/force microscope with a scanning electron microscope equipped with a field emission gun. The potentialities of this scanning near-field cathodoluminescence microscope are demonstrated on two kinds of sample: an indented MgO crystal and AlGaN/GaN quantum wells grown on GaN/sapphire. Monochromatic CL imaging allows a clear distinction between the emission of quantum wells and the GaN substrate, and for the MgO crystal, the localization on the slip bands, near the indentation, of luminescent centres emitting at 450 nm.  相似文献   

5.
We investigated fluorescence imaging using a near-field scanning optical microscope which uses a laser-stabilized gold nanoparticle as a near-field probe. This microscope is suitable for observations of biological specimens in aqueous solutions because the probe particle is held by a noncontact force exerted by a laser beam. Theoretical calculations based on Mie scattering theory are presented to evaluate the near-field enhancement by a gold particle of 40 nm diameter. We also present fluorescence images of a single fluorescent bead and discuss the near-field contribution to the fluorescence image in this type of microscope.  相似文献   

6.
We report on the fabrication, characterization and application of a probe consisting of a single gold nanoparticle for apertureless scanning near-field optical microscopy. Particles with diameters of 100 nm have been successfully and reproducibly mounted at the end of sharp glass fibre tips. We present the first optical images taken with such a probe. We have also recorded plasmon resonances of gold particles and discuss schemes for exploiting the wavelength dependence of their scattering cross-section for a novel form of apertureless scanning near-field optical microscopy.  相似文献   

7.
Fluorescently labelled myofibrils were imaged in physiological salt solution by near-field scanning optical microscopy and shear-force microscopy. These myofibrils were imaged in vitro , naturally adhering to glass while retaining their ability to contract. The Z-line protein structure of the myofibrils was antibody labelled and easily identified in the near-field fluorescence images. The distinctive protein banding structure of the myofibril was also seen clearly in the shear-force images without any labelling requirement. With the microscope in the transmission mode, resolution of the fluorescence images was degraded significantly by excessive specimen thickness (>1 μm), whereas the shear-force images were less affected by specimen thickness and more affected by poor adherence to the substrate. Although the exact mechanism generating contrast in the shear-force images is still unknown, shear-force imaging appears to be a promising new imaging modality.  相似文献   

8.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm.  相似文献   

9.
We fabricated a standard sample for a near-field optical microscope using scanning probe lithography. The sample contains a wedged pattern, which allows the measurement of various sizes within one image. The optical resolution of our near-field optical microscope has been evaluated as 40 nm, which was obtained by measuring the narrowest separable gap width of the wedged pattern. Thus a standard sample containing the wedged pattern enables clear evaluation of the resolution.  相似文献   

10.
Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths. It is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realize imaging of optical contrast on the subwavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical contrast, is found to be approximately 100 nm for light wavelengths in the visible region. We demonstrate imaging of near-field components of a dipole field and purely dielectric contrast (related to well-width fluctuations in a semiconductor quantum well) with a spatial resolution of approximately 100 nm. The results obtained show that such a near-field technique can be used for polarization-sensitive imaging with reasonably high spatial resolution and suggest a number of applications for this technique.  相似文献   

11.
Near-field optical second harmonic microscopy has been applied to imaging of the c/a/c/a polydomain structure of epitaxial PbZr x Ti1– x O3 thin films in the 0 <  x  < 0.4 range. Comparison of the near-field optical images and the results of atomic force microscopy and X-ray diffraction studies show that an optical resolution of the order of 100 nm is achieved. Symmetry properties of the near-field second harmonic signal allow us to obtain good optical contrast between the local second harmonic generation in c- and a-domains. Experimentally measured near-field second harmonic images have been compared with the results of theoretical calculations. Good agreement between theory and experiment is demonstrated.  相似文献   

12.
Fluorescence in situ hybridization on human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments on a single chromosome with an unprecedented resolution. Three nucleic acid probes are used: pUC1. 77. p1–79 and the plasmid probe α-spectrin. The hybridization signals are very well resolved in the near-field fluorescence images, while the exact location of the probes can be correlated accurately with the chromosome topography as afforded by the shear force image.  相似文献   

13.
We present the implementation of a short‐tip tapping‐mode tuning fork near‐field scanning optical microscope. Tapping frequency dependences of the piezoelectric signal amplitudes for a bare tuning fork fixed on the ceramic plate, a short‐tip tapping‐mode tuning fork scheme and an ordinary tapping‐mode tuning fork configuration with an 80‐cm optical fibre attached are demonstrated and compared. Our experimental results show that this new short‐tip tapping‐mode tuning fork scheme provides a stable and high Q factor at the tapping frequency of the tuning fork and will be very helpful when long optical fibre probes have to be used in an experiment. Both collection and excitation modes of short‐tip tapping‐mode tuning fork near‐field scanning optical microscope are applied to study the near‐field optical properties of a single‐mode telecommunication optical fibre and a green InGaN/GaN multiquantum well light‐emitting diode.  相似文献   

14.
Spatial derivatives of the optical fields scattered by a surface can be investigated by apertureless near-field optical microscopy by modulating sinusoidally the probe to sample distance and detecting the optical signal at the first and higher harmonics. Demodulation up to the fifth harmonic order has been accomplished on a sample of close-packed latex spheres by means of the silicon tip of a scanning interference apertureless microscope. The working principles of such microscope are reviewed. The experimental configuration used comprises a tuning-fork-based tapping-mode atomic force microscope for the distance stabilization, and a double-modulation technique for complete separation of the topography tracking from the optical detection. Simple modelling provides first indications for the interpretation of experimental data. The technique described here provides either artefact-free near-field optical imaging, or detailed information on the structure of the near fields scattered by a surface.  相似文献   

15.
A new technique, optical near-field photochemical vapour deposition (NFO-PCVD) enables maskless production of nanometric structures with controllable size, chemical composition and morphology. By placing a near-field optical microscope inside the reaction chamber for photochemical vapour deposition we have deposited nanoscale metal patterns. We demonstrate for the first time, successfully deposited in the near-field region, lines of metallic zinc with the observed stripe width of 20 nm.  相似文献   

16.
A near-field scanning optical microscope has been combined with a two-colour time-resolved pump-probe measurement system. It has a noise-equivalent transmittance change of 5.0 × 10−5 for a probe pulse with an intensity of 30 nW. The system has been used for evaluating molecular thin films that have a domain structure, particularly for observing a gate action of the single domains. The results include key features to understand an origin of the domains and suggest that the film composition is uniform over a distance of several micrometres.  相似文献   

17.
Hillenbrand R 《Ultramicroscopy》2004,100(3-4):421-427
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics—a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.  相似文献   

18.
We have developed an instrument for optically measuring carrier dynamics in thin-film materials with ≈150 nm lateral resolution, ≈250 fs temporal resolution and high sensitivity. This is accomplished by combining an ultrafast pump–probe laser spectroscopic technique with a near-field scanning optical microscope. A diffraction-limited pump and near-field probe configuration is used, with a novel detection system that allows for either two-colour or degenerate pump and probe photon energies, permitting greater measurement flexibility than that reported in earlier published work. The capabilities of this instrument are proven through near-field degenerate pump–probe studies of carrier dynamics in GaAs/AlGaAs single quantum well samples locally patterned by focused ion beam (FIB) implantation. We find that lateral carrier diffusion across the nanometre-scale FIB pattern plays a significant role in the decay of the excited carriers within ≈1 μm of the implanted stripes, an effect which could not have been resolved with a far-field system.  相似文献   

19.
Sugiura T  Kawata S  Okada T 《Journal of microscopy》1999,194(PT 2-3):291-294
We investigated fluorescence imaging using a near-field scanning optical microscope which uses a laser-stabilized gold nanoparticle as a near-field probe. This microscope is suitable for observations of biological specimens in aqueous solutions because the probe particle is held by a noncontact force exerted by a laser beam. Theoretical calculations based on Mie scattering theory are presented to evaluate the near-field enhancement by a gold particle of 40 nm diameter. We also present fluorescence images of a single fluorescent bead and discuss the near-field contribution to the fluorescence image in this type of microscope.  相似文献   

20.
We introduce a method of dye fluorescence excitation and measurement that utilizes a near-field scanning optical microscope (NSOM). This NSOM uses an apertureless metallic probe, and an optical system that contains a high numerical aperture (NA) objective lens (NA = 1.4). When the area which satisfies NA < 1 is masked, the objective lens allows for the rejection of possible transmitted light (NA < 1) through the sample. In such conditions, the focused spot consists of only the evanescent field. We found that this NSOM system strongly reduces the background of the dye fluorescence and allows for the measurement of the fluorescence intensity below the diffraction limit of the excitation source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号