首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The knowledge of building stock energy data of a country is a very significant tool for energy benchmarks establishment, energy rating procedures and building classification boundaries determination, according to the Directive 2002/91/EC and its implementation in EU Member States. The lack of building energy databases in many EU Countries, including Greece, and the difficulties of collecting them lead to the investigation of other potential solutions. The aim of this paper is to present a method of a Virtual Building Dataset (VBD) creation for office buildings in Greece. The philosophy of VBD is based on the creation and simulation of random office buildings that could be found or built in Greece, taking into account the Greek constructional and operational characteristics of office buildings and Greek legislation. The VBD consists of 30,000 buildings (10,000 in each climatic zone) with their detailed constructional and operational data and of their simulation outputs: the annual specific energy consumption for heating, cooling, artificial lighting, office equipment and an indoor thermal comfort indicator. Based on VBD results the energy and indoor thermal comfort benchmarks for office building sector in Greece are assessed and presented.  相似文献   

2.
Two surveys were carried out to investigate the correlation between building maintenance management services for indoor environmental quality (IEQ) and occupant satisfaction. Each maintenance management organization manager was surveyed using the Evaluation Index of Maintenance Management Service Quality, created by Akira Takakusagi. Seven office buildings in Seoul, Korea were investigated in the first survey, and two buildings from the first survey were selected for analysis in the second survey. One is a building with good maintenance management services but low occupant satisfaction, and the other is an office building with low maintenance management services but high occupant satisfaction.  相似文献   

3.
Energy conscious design of school buildings, as well as deemed-to-satisfy provisions in a Performance Based Energy Code, should address the problem known as the energy efficiency—thermal comfort—indoor air quality dilemma (EE-TC-IAQ Dilemma). In warm and moderate climates, the large internal heat sources usually found in school buildings prevent achieving thermal comfort without active cooling in summer, but are not sufficient to eliminate the need for heating in winter. Commonly used air-conditioners do not improve air quality, while natural ventilation induces uncontrolled energy losses. In this study, a step by step process was used for the development of deemed-to-satisfy design solutions, which cope with the EE-TC-IAQ Dilemma, for a performance based code. A distinction is made between improving building design variables and improving ventilation schemes. Results indicate that implementation of improved ventilation schemes in an otherwise well designed energy-conscious building result in savings of 28–30% and 17–18% for northern and southern classroom orientations, respectively.  相似文献   

4.
This study presents findings of indoor environmental quality (IEQ) investigations conducted in elementary schools׳ classrooms in the United Arab Emirates (UAE). Average TVOC, CO2, O3, CO, and particle concentrations measured in the classrooms were 815 µg/m3, 1605 ppm, 0.05 ppm, 1.16 ppm, and 1730 µg/m3, respectively. Whereas, local authority known as Dubai Municipality recommended 300 µg/m3, 800 ppm, 0.06 ppm, 9 ppm, and 150–300 µg/m3 for TVOC, CO2, O3, CO, and particle, respectively. Dubai Municipality recommended temperature and relative humidity (RH) levels of 22.5 °C to 25.5 °C and 30%–60%, respectively. Average temperature and RH levels measured in the classrooms were 24.5 °C and 40.4%, respectively. Average sound level in the classrooms was 24 dB greater than recommended sound level limit of 35 dB. Six (6) classrooms had average lux levels in the range of 400–800 lux. Two (2) classrooms had average lux levels in the range of 100–200 lux. The remaining classrooms had lux levels around the recommended 300 lux. High occupancy density was observed in majority of the studied classrooms. Observations during walkthrough investigations could be used to explain measured IEQ data. Poor IEQ conditions in the studied classrooms highlight the need for further research investigation to understand how poor classrooms׳ IEQ condition could influence students׳ health, comfort, attendance rate, and academic performance.  相似文献   

5.
A personalized measure for thermal comfort has been applied for use in combination with smart controls for building automation. Using data from a field study, we first show the superiority of personalized measures for thermal comfort compared to standard non-adaptive methods. Based on this knowledge we describe a methodology, using logistic regression techniques, to convert user votes to a probability of comfort. We also describe the interface used to collect the votes. We show that, for a given subject, our thermal profile converges against the probabilities found in the field study. As a case study we implemented the measure in a control algorithm to control the shading devices. The results clarify the mode of action and also show the effectiveness of the method.  相似文献   

6.
In building simulations it is common practice to use standardized occupant behavior and internal gains. Although this is a valid approach for designing systems, the probabilistic nature of these boundary conditions influences the energy demand and achieved thermal comfort of real systems. This paper analyzes the influence of occupant behavior on the energy performance and thermal comfort of a typical office floor equipped with a thermally activated building system (TABS). A multi-zone TRNSYS model with 10 adjacent zones per orientation for a typical moderate Belgian climate is set up. First, the energy performance and thermal comfort of thermally activated building systems (TABS) are compared with the performance of idealized cooling with standardized user behavior. TABS are able to deliver good thermal comfort but show to have a higher energy demand. Secondly, probabilistic occupant behavior was implemented in the TABS simulations. The influence of the occupancy rate, the shading device use and switching of the lights are analyzed by defining user profiles. It is shown that occupant behavior may have an important influence on the cooling demand and thermal comfort. However, as long as good solar protection is foreseen and operated in a correct way, TABS are able to cope with different user behavior modeled in this paper. In this case, normal daily stochastic processes do not considerably affect the cooling demand and thermal comfort during summer.  相似文献   

7.
This paper presents the findings of a case study with building simulation using EnergyPlus dynamic thermal simulation software, in which wall insulation was varied together with cooling set-point temperature in a hot and dry climate of Botswana. Against the established norm that adding wall insulation reduces annual fuel consumption, it is shown in this paper that this is not always the case: there are instances where adding wall insulation directly increases annual fuel consumption. Initial cost of insulation aside, as the cooling set-point temperature is gradually increased, the building switches from an “insulation reduces cooling load” to an “insulation increases cooling load” behaviour. In other words, the well established knowledge that “the lower the u-value the better” gets overridden by “the higher the u-value the better”. We termed this a “point of thermal inflexion”. Simple graphical demonstration of the existence of this point is presented in the paper. According to the findings, design engineers and building economics related professionals who quantify investment on insulation can get disastrous results if they assume that all buildings behave pro-insulation since a building may behave anti-insulation.  相似文献   

8.
Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasília and Florianópolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatística—Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informações de Posses de Eletrodomésticos e Hábitos de Consumo—Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each façade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical façades at the sites investigated.  相似文献   

9.
The objective of this study is to determine the potential energy savings and thermal comfort benefits of exposing concrete in the ceiling to the indoor air as an alternative to suspended ceiling. The performances were assessed through monitoring of room air and surface temperatures in an office building in operation, and simulation of different scenarios with a calibrated building simulation model. In this study, it is shown that ESP-r is capable of simulating an advanced controlled office building in operation with good agreement with the measurements. The results presented in this paper indicate that exposed concrete in the ceiling both reduces the number of hours with excessive temperatures considerably and create a better and more stable thermal environment during the working day. Also, exposed concrete increases the achievements of utilizing night free cooling significantly. However, by removing the suspended ceiling, only minor annual heating energy savings are achieved.  相似文献   

10.
This work shows some of the results of a field study about environmental comfort investigations in classrooms. In this project thermal, acoustic, visual and air quality aspects were analysed in a number of classrooms—13 classrooms at four different high schools of the Provincia di Torino and four typical medium-sized university classrooms of the Politecnico di Torino, Italy. The investigations were carried out during the heating period. Both field measurements and subjective surveys were performed at the same time during the regular lesson periods.  相似文献   

11.
Previous studies have found that classrooms are often inadequately ventilated, with the resultant increased risk of negative impacts on the pupils. This paper describes a series of field measurements that investigated the indoor air quality, thermal comfort and acoustic performance of nine recently built secondary schools in England. The most significant conclusion is that the complex interaction between ventilation, thermal comfort and acoustics presents considerable challenges for designers. The study showed that while the acoustic standards are demanding it was possible to achieve natural ventilation designs that met the criteria for indoor ambient noise levels when external noise levels were not excessive. Most classrooms in the sample met the requirement of limiting the daily average CO2 concentration to below 1500 ppm but just a few met the need to readily provide 8 l/s per person of fresh air under the easy control of the occupants. It would seem that the basic requirement of 1500 ppm of CO2 is achieved as a consequence of the window areas being just sufficient to provide the minimum of 3 l/s per person at low and intermittent occupancy. Thermal comfort in the monitored classrooms was mostly acceptable but temperatures tended to be much higher in practice than the design assumed.  相似文献   

12.
Symptoms, signs, perceptions, and objective measures were studied in university buildings. Two problem buildings with a history of dampness and complaints were compared with two control buildings. Health investigations among university staff were performed at the workplace (n = 173) including tear film stability [non-invasive break-up time (NIBUT) and self-reported break-up time (SBUT)], nasal patency (acoustic rhinometry), nasal lavage fluid analysis [NAL: eosinophil cationic protein (ECP), myeloperoxidase (MPO), lysozyme and albumin] and atopy by total serum IgE and IgE antibodies (Phadiatop). Exposure assessment included inspections, thermal and atmospheric climate at 56 points modelled for all work sites. Multiple regressions were applied, controlling for age and gender. Exposure differences between problem buildings and controls were small, and variations between rooms were greater. Workers in the problem buildings had more general and dermal symptoms, but not more objective signs than the others. Adjusted day NIBUT and SBUT increased at higher night air temperatures, with B (95% CI) 0.6 (0.04-1.2) and 1.3 (-0.02 to 2.5), respectively. Higher relative humidity at mean day air temperature <22.1 degrees C was associated with adjusted NIBUT and SBUT, with B (95% CI) 0.16 (0.03-0.29) and 0.37 (-0.01 to 0.75), respectively. Air velocity below recommended winter values and reduced relative humidity in the range of 15-30% were associated with dry air and too low temperature. PRACTICAL IMPLICATIONS: Thermal climate in university buildings may be associated with both perceptions and physiological signs. Reduced night time air temperature, increased difference in air temperature between day and night, and fast changes in air temperature might impair indoor environment. This may have implication for energy-saving policies. It might be difficult to identify the exposure behind, and find the reason why, some buildings are defined as 'problem buildings'.  相似文献   

13.
There is a growing attention for the Indoor Air Quality problems in schools, but there is far less attention for the thermal comfort aspects within schools. A literature review is done to clear the effects of thermal quality in schools on the learning performance of the students: it clearly shows that thermal environment is like IAQ of great influence to the students' performance. As many studies focus on the ventilation aspects we focus more on the thermal comfort of the schools through measurements and questioners held in 14 schools equipped with different types of ventilation and heating systems.  相似文献   

14.
Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO2, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants’ feet.  相似文献   

15.
Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS) supplemented with CAV ventilation. Simulations comprised moderate, hot–dry and hot–humid climate. Heavy and light wall construction and two orientations of the building (east–west and north–south) were considered. Besides the energy use, also capability of examined systems to keep a certain level of thermal comfort was examined. The results showed that with the moderate climate, the TABS decreased the primary energy use by about 16% as compared with the VAV. With hot–humid climate, the portion of the primary energy saved by TABS was ca. 50% even with the supply air dehumidification taken into account. The TABS working in a moderate climate kept the predicted percentage of dissatisfied (PPD) <10% during 60–80% of the working hours per year. Optimization of the TABS's control strategy (circulation pump dead-band, water supply temperature) resulted in significant reduction of the annual working hours with PPD > 10%; 1.4% in comparison to 17.5% h/yr. The highest estimated loss of occupants’ productivity related to their thermal sensation hasn’t exceeded 1% in whole year average.  相似文献   

16.
黄恒栋  王建华 《华中建筑》2003,21(1):60-60,75
在围护结构(屋顶、墙、窗)隔热控制的基础上,提出了屋顶、墙、窗的节能控制条件,窗——墙作用因子(算符)和隔热一节能作用因子(算符)。在已知墙的隔热控制指标条件下,可简单地计算出窗的隔热控制指标;同时,在已知墙、窗的隔热控制指标情况下,也可简单地计算出墙、窗的节能控制指标。  相似文献   

17.
The aim of the present paper is to present a model-based predictive controller, combined with a Building Energy Management System (BEMS). The overall system predicts the indoor environmental conditions of a specific building and selects the most appropriate actions so as to reach the set points and contribute to the indoor environmental quality by minimizing energy costs. The controller is tested using a BEMS installation in Hania, Crete, Greece.  相似文献   

18.
Based on building energy and indoor environment simulations, this study uses a recently developed method relying on Bayesian Network theory to estimate and compare the consequences for occupant performance and energy consumption of applying temperature criteria set according to the adaptive model of thermal comfort and the more conventional PMV model. Simulations were carried out for an example building with two configurations (with and without mechanical cooling) located in tropical, subtropical, and temperate climate regions. Even though indoor temperatures differed significantly between building configurations, especially in the tropical climate, the estimated performance differed only modestly between configurations. However, energy consumption was always lower in buildings without mechanical cooling, particularly so in the tropical climate.  相似文献   

19.
The global trend towards urbanisation explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on energy use of buildings. Also urban comfort, health and durability, referring respectively to pedestrian wind/thermal comfort, pollutant dispersion and wind-driven rain are of interest. Urban Physics is a well-established discipline, incorporating relevant branches of physics, environmental chemistry, aerodynamics, meteorology and statistics. Therefore, Urban Physics is well positioned to provide key-contributions to the current urban problems and challenges. The present paper addresses the role of Urban Physics in the study of wind comfort, thermal comfort, energy demand, pollutant dispersion and wind-driven rain. Furthermore, the three major research methods applied in Urban Physics, namely field experiments, wind tunnel experiments and numerical simulations are discussed. Case studies illustrate the current challenges and the relevant contributions of Urban Physics.  相似文献   

20.
This article deals with both an experimental study and a numerical model of the thermal behaviour of a building whose roof is equipped with photovoltaic panels (PV panels). The aim of this study is to show the impact of the PV panels in terms of level of insulation or solar protection for the building. Contrary to existing models, the one presented here will allow us to determine both the temperature field of the building and the electric production of the PV array. Moreover, an experimental study has been conducted in La Reunion Island, where the climate is tropical and humid, with a strong solar radiation. In such conditions, it is important to minimise the thermal load through the roof of the building. The thermal model is integrated in a building simulation code and is able to predict the thermal impact of PV panels installed on buildings in several configurations and also their production of electricity. Basically, the PV panel is considered as a complex wall within which coupled heat transfer occurs. Conduction, convection and radiation heat transfer equations are solved simultaneously to simulate the global thermal behaviour of the building envelope including the PV panels; this is an approach we call ‘integrated modelling’ of PV panels. The experimental study is used to give elements of validation for the numerical model and a sensitivity analysis has been run to put in evidence the governing parameters. It has been shown that the radiative properties of the PV panel have a great impact on the temperature field of the tested building and the determination of these parameters has to be taken with care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号