首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of the benthic amphipod Diporeia spp. have sharply declined since the early 1990s in all North America's Great Lakes except Lake Superior. The onset and continued decline coincides with the invasion of these lakes by zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels and the spread of quagga mussels to deep habitats. The six deepest Finger Lakes of central New York (Seneca, Cayuga, Skaneateles, Canandaigua, Keuka, and Owasco) have historically been Diporeia habitat and have had dreissenids for more than a decade. These lakes represent a wide range of trophic state, maximum depth, and dreissenid invasion history. We hypothesized that Diporeia abundance would be negatively impacted by dreissenid mussel expansion in the Finger Lakes. During 2006–2010, we sampled Diporeia and mussel populations in these six lakes. Diporeia was present in all six lakes, and was abundant (2000/m2) in Owasco Lake that has only zebra mussels and in Cayuga and Seneca Lakes that have had zebra and quagga mussels since 1994. Diporeia abundance was lowest (1000/m2) in Skaneateles, Canandaigua, and Keuka Lakes where quagga mussels have recently expanded. Productivity indicators explained much of the variability of Diporeia abundance. The persistence of Diporeia with quagga mussels in these lakes may be because of available alternative food resources. Fatty acid tracers indicate that Diporeia from Owasco Lake, the lake without quagga mussels, utilize diatoms, but Diporeia from Cayuga Lake that coexist with abundant quagga mussels also use food resources associated with terrestrial detritus that cannot be intercepted by dreissenids.  相似文献   

2.
In recent years, quagga mussels (Dreissena rostriformis bugensis) have almost completely replaced zebra mussels (Dreissena polymorpha) in the Lower Great Lakes. As recreational boats are the main vector of spread for dreissenids in North America, this study examined whether lakes Erie and Ontario could still be sources for the spread of zebra mussels. In the summer–fall of 2010, the abundance of each species of Dreissena on 196 boats from 5 marinas in lakes Erie and Ontario was examined. Additional samples of Dreissena in 2010–2012 were collected in tributaries, bays, and in the upper littoral zones of these lakes. A total of 77 boats were fouled by Dreissena, and of those 61 were fouled by both species, 13 were fouled just by zebra mussels, and only 3 were fouled solely by quagga mussels. Although quagga mussels compose ~ 99% of dreissenids in eastern Lake Erie and in Lake Ontario, on boats at most marinas sampled, zebra mussels were usually more abundant and significantly larger than quagga mussels. Refugia for zebra mussels were found in bays, tributaries, and upper littoral zones with high wave activity. Thus, although quagga mussels are now more abundant than zebra mussels within the Lower Great Lakes, these waterbodies still have the potential to be a source for the spread of zebra mussels, and for some vectors, the propagule pressure from zebra mussels is likely greater than that from quagga mussels.  相似文献   

3.
The status of invasive dreissenid mussels (Dreissena polymorpha and D. bugensis) and native amphipods (Diporeia spp.) in Lake Ontario was assessed in 2003 and compared with historical data. D. polymorpha (zebra mussels) were rarely observed in 2003, having been displaced by D. bugensis (quagga mussels). D. bugensis expanded its depth range from 38 m depth in 1995 to 174 m in 2003 and this dreissenid reached densities averaging 8,000/m2 at all sites < 90 m. During the same time period, Diporeia populations almost completely disappeared from 0–90 m depth, continuing a declining trend from 1994–1997 reported in previous studies. The average density of Diporeia in the 30–90 m depth interval decreased from 1,380/m2 to 63/m2 between 1997 and 2003. Prior to 2003, areas deeper than 90 m represented a refuge for Diporeia, but even these deep populations decreased, with densities declining from 2,181/m2 in 1999 to 545/m2 in 2003. Two common hypotheses for the decline of Diporeia in the Great Lakes are food limitation and a toxin/pathogen associated with dreissenid pseudofeces. The Diporeia decline in deep waters preceded the expansion of D. bugensis to these depths, and suggests that shallow dreissenid populations remotely influence profundal habitats. This pattern of decline is consistent with mechanisms that act from some distance including nearshore dreissenid grazing and downslope transport of pseudofeces.  相似文献   

4.
Invasive species have had major impacts on the Great Lakes. This is especially true of exotic dreissenid mussels which are associated with decreased abundance of native macroinvertebrates and changes in food availability for fish. Beginning in 2001, we added a benthic macroinvertebrate survey to the USGS-Great Lakes Science Center's annual fall prey fish assessment of Lake Huron to monitor abundance of macrobenthos. Mean abundance of Diporeia, the most abundant benthic taxon in Lake Huron reported by previous investigators, declined greatly between 2001 and 2007. Diporeia was virtually absent at 27-m sites by 2001, decreased and was lost completely from 46-m depths by 2006, but remained present at reduced densities at 73-m sites. Dreissenids in our samples were almost entirely quagga mussels Dreissena bugensis. Zebra mussels Dreissena polymorpha were virtually absent from our samples, suggesting that they were confined to nearshore areas shallower than we sampled. Loss of Diporeia at individual sites was associated with arrival of quagga mussels, even when mussel densities were low. Quagga mussel density peaked during 2002, then decreased thereafter. During the study quagga mussels became established at most 46-m sites, but remained rare at 73-m sites. Length frequency distributions suggest that initial widespread recruitment may have occurred during 2001–2002. Like other Great Lakes, Lake Huron quagga mussels were associated with decreased abundance of native taxa, but negative effects occurred even though dreissenid densities were much lower. Dreissenid effects may extend well into deep oligotrophic habitats of Lake Huron.  相似文献   

5.
Lake Erie has the longest history of colonization by both Dreissena polymorpha and Dreissena rostriformis bugensis in North America and is therefore optimal for the study of long-term dynamics of dreissenid species. In addition, the morphometry of Lake Erie basins varies dramatically from the shallow western to the deep eastern basin, making this waterbody a convenient model to investigate patterns of Dreissena distribution, as well as interspecies interactions among dreissenids. We compare our data on the distribution, density and wet biomass of both dreissenid species in Lake Erie collected in 2009 and 2011–2012 with previous data. We found that Dreissena spp. distribution in Lake Erie varied depending on the time since the initial invasion, collection depth, and lake basin. In 2009–2012, zebra mussels were smaller than in 1992 and were consistently smaller than quagga mussels. During 2009–2012, quagga mussels were found at all depths and in all basins, while zebra mussels were common in the western basin only, and in the central and eastern basins were limited to shallow depths, resulting in an almost complete replacement of D. polymorpha with D. rostriformis bugensis. In the shallowest western basin of Lake Erie, zebra mussels represented > 30% of the combined dreissenid density even after more than 20 years of coexistence, providing strong evidence that, even in lakes as large as Lake Erie (or at least its western basin), D. polymorpha may sustain a significant presence for decades without being displaced by quagga mussels.  相似文献   

6.
A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreisenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.  相似文献   

7.
Quagga and zebra mussels (Dreissena bugensis and D. polymorpha) are spreading across lakes in Europe and North America. In particular, quagga mussels colonize lakes to great depths (>200 m). To better understand the colonization pattern of quagga mussels in deep lakes, we studied the settlement of quagga mussels along a depth gradient on colonization plates at multiple depths (1–140 m) in the pelagic zone of two recently invaded perialpine lakes, Lake Constance and Lake Geneva. We measured colonization rates every three months over one year on colonization plates deployed in both lakes at defined depths. We also assessed long-term population dynamics from abundance and size distribution using repeated photogrammetry of colonization plates. Highest colonization rates and largest mussel sizes occurred above 8 m depth, and almost no zebra mussels were found. Colonization rates decreased to almost zero below 30 m. Colonization rates on plates were associated with variation in environmental conditions as well as veliger densities in the plankton across season and depth. Temperature was the most important environmental parameter that influenced colonization. Our results will help to better understand the seasonal colonization patterns of invasive quagga mussels in deep lakes.  相似文献   

8.
In invasive dreissenid communities, the zebra mussel usually appears earlier and then is displaced by the quagga mussel. We analysed length-weight allometric relationships, attachment strength (2 days, 1 week and 1 month of exposure), shell crushing resistance and glycogen content across the entire size range of both species in large shallow European lakes where this displacement has recently occurred. In Lake Balaton (Hungary) and Ijsselmeer (The Netherlands), the soft tissue dry weight increment of zebra mussels per unit length decreased after the quagga mussel invasion and became lower than that of quagga mussels. In Lake Markermeer (the Netherlands), having relatively worse environmental conditions, dry weight increment per unit length was always higher in quagga mussels than in zebra mussels, but no negative change in dry weight increment occurred in zebra mussels during the quagga mussel invasion. Small zebra mussels had more resistant shells and stronger attachment than quagga mussels. These differences were reduced (shell hardness) or reversed (long-term attachment) in larger individuals. Zebra mussels had lower glycogen content than quagga mussels across the entire size range. Thus, the quagga mussel advantage over zebra mussel likely consists in the faster dry weight increment per unit length and higher storage product contents of the former, due to its lower investments in attachment strength and shell crushing resistance.  相似文献   

9.
Field evidence suggests a shift in the dreissenid population from zebra (Dreissena polymorpha) to quagga (D. bugensis) mussels is occurring within the lower Great Lakes. This laboratory study directly compared per-mussel and per-dry-weight filtration rates (volume per time) of both species, gauged by the clearance of resuspended natural sediments (1 to 12 mg/L) from gently mixed, 1-L static vessels. Mussels of 15- and 20-mm lengths were collected together from the Lake Ontario drainage basin at Oak Orchard Creek, Medina, NY, and maintained and tested in ambient Niagara River water. A 2 × 4 factorial design was employed, with species and season as independent factors. Season significantly influenced filtration rate of both size classes, and winter rates were about half those measured during the rest of the year. Species significantly influenced filtration of 20-mm mussels. Quagga mussels of this size filtered up to 37% faster than zebra mussels (data for spring: 309 vs. 226 mL/h/mussel, n = 18 and 20 individuals, respectively). Species was not a significant factor alone for 15-mm mussels, but a species x season interaction was significant. The zebra mussels employed here had 16 to 22% more ash-free dry weight (AFDW) than the quagga mussels, accentuating filtration differences when expressed per-mg-AFDW.  相似文献   

10.
Benthic monitoring by USGS off the southern shore of Lake Ontario from October 1993 to October 1995 provides a detailed view of the early stages of the decline of the native amphipod Diporeia. A loss of the 1994 and 1995 year classes of Diporeia preceded the disappearance of the native amphipod at sites near Oswego and Rochester at depths from 55 to 130 m. In succeeding years, Diporeia populations continued to decline in Lake Ontario and were nearly extirpated by 2008. Explanations for Diporeia's decline in the Great Lakes include several hypotheses often linked to the introduction and expansion of exotic zebra and quagga mussels (Dreissena sp.). We compare the timeline of the Diporeia decline in Lake Ontario with trends in two sources of organic matter to the sediments — spring diatom blooms and late summer whiting events. The 1994–95 decline of Diporeia coincided with localized dreissenid effects on phytoplankton in the nearshore and a year (April 1994 to May 1995) of decreased flux of organic carbon recorded by sediment traps moored offshore of Oswego. Later declines of profundal (> 90 m) Diporeia populations in 2003 were poorly associated with trends in spring algal blooms and late summer whiting events.  相似文献   

11.
The USGS-Great Lakes Science Center has collected dreissenid mussels annually from Lake Michigan since zebra mussels (Dreissena polymorpha) became a significant portion of the bottomtrawl catch in 1999. For this study, we investigated dreissenid distribution, body mass, and recruitment at different depths in Lake Michigan during 2001–2003. The highest densities of dreissenid biomass were observed from depths of 27 to 46 m. The biomass of quagga mussels (Dreissena bugensis) increased exponentially during 2001–2003, while that of zebra mussels did not change significantly. Body mass (standardized for a given shell length) of both species was lowest from depths of 27 to 37m, highest from 55 to 64 m, and declined linearly at deeper depths during 2001–2003. Recruitment in 2003, as characterized by the proportion of mussels < 11 mm in the catch, varied with depth and lake region. For quagga mussels, recruitment declined linearly with depth, and was highest in northern Lake Michigan. For zebra mussels, recruitment generally declined non-linearly with depth, although the pattern was different for north, mid, and southern Lake Michigan. Our analyses suggest that quagga mussels could overtake zebra mussels and become the most abundant mollusk in terms of biomass in Lake Michigan.  相似文献   

12.
Dreissenid (zebra and quagga) mussels are widely recognized as having strong, adverse ecological and economic impacts, e.g., biofouling and loss of water column primary production. We assessed perceptions and values associated with two less often considered ecological outcomes of dreissenid mussel influences on coastal ecosystems along Lake Ontario and the western St. Lawrence River in New York State. One, the generation of water clarity through filtration, we define as an ecosystem service; the other, the production of large amounts of nuisance algae (e.g., Cladophora and Microcystis) is defined as an ecosystem disservice. Surveys of business owners and homeowners quantified their preferences and the formation of values regarding these products of zebra mussel influence. Water clarity increased greatly, particularly in the eastern portion of Lake Ontario, and algal problems increased throughout. Businesses attributed increases and decreases in revenues associated with water clarity and algae; homeowners reported analogous changes in property values. Water clarity was positively associated, and algae negatively associated, with changes in revenues and property values. Threshold responses of costs as functions of filamentous algae were evident. Given the likely continued influx of invasive species due to human activities, further development of the ecosystem service concept should consider potential “goods” and “bads” of invasives and their influence on ecosystem and social system resiliency.  相似文献   

13.
The invasion of the Great Lakes by zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena bugensis) has been accompanied by tremendous ecological change. In this paper we characterize the extent to which dreissenids dominate the nearshore of the Canadian shoreline of Lake Ontario and examine mussel distribution in relation to environmental factors. We surveyed 27 5-m sites and 25 20-m sites in late August 2003. Quagga mussels dominated all sites (mean: 9,404/m2; range 31–24,270), having almost completely replaced zebra mussels. Round gobies (Neogobius melanostomus) were associated with quagga populations dominated by large mussels. Quagga mussel total mass was low at 5-m sites with high upwelling frequency; we believe this is the first documentation of reduced benthic biomass in areas of upwelling in Lake Ontario. Overall, we estimated 6.32×1012 quagga mussels weighing 8.13×1011 g dry weight and carpeting ∼66% of the nearshore benthic habitat. Quagga mussels are a dominant and defining feature of the Lake Ontario nearshore, and must be accounted for in management planning.  相似文献   

14.
We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5–100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900 pmol g− 1·min− 1 and activities in quagga mussels ranged from 19,500 to 223,800 pmol g− 1·min− 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.  相似文献   

15.
We examined three decades of changes in dreissenid populations in Lake Ontario and predation by round goby (Neogobius melanostomus). Dreissenids (almost exclusively quagga mussels, Dreissena rostriformis bugensis) peaked in 2003, 13 years after arrival, and then declined at depths <90 m but continued to increase deeper through 2018. Lake-wide density also increased from 2008 to 2018 along with average mussel lengths and lake-wide biomass, which reached an all-time high in 2018 (25.2 ± 3.3 g AFTDW/m2). Round goby densities were estimated at 4.2 fish/m2 using videography at 10 to 35 m depth range in 2018. This density should impact mussel populations based on feeding rates, as indicated in the literature. While the abundance of 0–5 mm mussels appears to be high in all three years with measured length distributions (2008, 2013, 2018), the abundance of 5 to 12 mm dreissenids, the size range most commonly consumed by round goby, was low except at >90 m depths. Although the size distributions indicate that round goby is affecting mussel recruitment, we did not find a decline in dreissenid density in the nearshore and mid-depth ranges where goby have been abundant since 2005. The lake-wide densities and biomass of quagga mussels have increased over time, due to both the growth of individual mussels in the shallower depths, and a continuing increase in density at >90 m. Thus, the ecological effects of quagga mussels in Lake Ontario are likely to continue into the foreseeable future.  相似文献   

16.
Dreissenid mussels are aggressive invasive species that are continuing to spread across North America and co-occur in the same waterbodies with increasing frequency, yet the outcome and implications of this competition are poorly resolved. In 2009 and 2015, detailed (700 + sample sites) surveys were undertaken to assess the impacts of invasive dreissenid mussels in Lake Simcoe (Ontario, Canada). In 2009, zebra mussels were dominant, accounting for 84.3% of invasive mussel biomass recorded. In 2015, quagga mussels dominated (88.5% of invasive mussel biomass) and had expanded into profundal (> 20 m water depth) sites and onto soft (mud/silt) substrates with a mean profundal density of 887 mussels/m2 (2015) compared to ~ 39 mussels/m2 in 2009. Based on our annual benthos monitoring, at a subset of ~ 30 sites, this shift from zebra to quagga mussels occurred ~ 2010 and is likely related to a population decline of zebra mussels in waterbodies where both species are present, as recorded elsewhere in the Great Lakes Region. As the initial invasion of dreissenid mussels caused widespread ecological changes in Lake Simcoe, we are currently investigating the effects this change in species dominance, and their expansion into the profundal zone, will have on the lake; and our environmental management strategies. Areas of future study will include: changes in the composition of benthos, fish, or phytoplankton communities; increased water clarity and reduction of the spring phytoplankton bloom; energy/nutrient cycling; and fouling of anthropogenic in-lake infrastructures (e.g. water treatment intakes) built at depths > 25 m to avoid previous zebra mussel colonization.  相似文献   

17.
For bivalves, somatic growth is often inferred from shell measurements alone. However, shell growth may not always reflect changes in soft tissue due to confounding factors such as seasonal or ontogenetic asynchrony between shell and tissue, flexible energy allocation, or population differences. This study compares the relationship between shell growth, changes in soft tissue mass, and RNA/DNA ratio in the zebra mussel (Dreissena polymorpha) and quagga mussel (Dreissena bugensis) from contrasting riverine and brackish estuarine environments. Reciprocal transplantation indicated that shell growth in late summer was consistently lower for the estuarine source zebra mussels while the RNA/DNA ratio was highest for zebra mussels independent of either geographic source or destination. Shell growth of the river source quagga mussels was almost two times greater than zebra mussels at the river site, but both shell growth and final tissue mass were lower in the estuarine environment. While there were no differences in final RNA/DNA ratios between zebra and quagga mussels from the same source, the RNA/DNA ratio of zebra mussels from the estuary and transplanted to the estuary was higher than that of all other zebra mussel treatments. This study suggests that shell growth does not always accurately reflect tissue growth and that the shell and tissue growth of quagga mussels is greater than that of zebra mussels in fresh but not brackish waters, and that physiological plasticity can have a fixed geographic component.  相似文献   

18.
19.
The total abundance in Lake Ontario of Dreissena polymorpha (Dreissenidae), the zebra mussel, and D. bugensis (Dreissenidae), the quagga mussel, was calculated by aggregating data from several surveys carried out in 1991 to 94. In 1993, there were between 3.0 × 10 and 8.7 × 1012 Dreissenidae mussels in Lake Ontario. A filtration model was contructed using depth-specific density estimates, a digital bathymetric map of the lake, and literature estimates of clearance rates for individual mussels. With reasonable estimates of both densities and filtration rates, the mean, area-weighted, turnover time of Lake Ontario water by dreissenid mussels was about 1 year. At the smaller spatial scale of the Bay of Quinte, the same model estimated turnover times of 0.05, 0.2, and 10 days for the lower, middle, and upper areas of the bay, respectively. Depth-specific secondary production estimates for dreissenids, combined with literature estimates of net primary production and energy transfer efficiencies, were incorporated into a food demand model that indicated about 1.25 gC/y mussel of food in Lake Ontario and a consumption efficiency of 50%. At the smaller spatial scale of the Bay of Quinte, the same model estimated one to two orders of magnitude less food per mussel and 62%, 130% and 115% consumption efficiency for the lower, middle and upper areas of the bay, respectively. Dreissenidae mussels may not have a huge impact on the Lake Ontario food web when considered at a whole-lake scale, but their potentially striking impact at the smaller spatial scale of embayments like the Bay of Quinte indicate that they may be locally important. When these effects are aggregated across several sub-systems, Dreissenidae mussels may have unpredictable, larger scale effects in the Lake Ontario ecosystem as a whole.  相似文献   

20.
The zebra mussel, Dreissena polymorpha, is widespread in the St. Lawrence River while the conspecific quagga mussel, Dreissena bugensis, is found only in the Lake Ontario outflow region of the river. This situation provided an opportunity to evaluate in situ environmental and interspecific heterogeneity in shell and tissue growth. Shell dry weight, carbon content, and shell strength of D. polymorpha from the four spatially discrete water masses differed significantly. For instance, D. polymorpha total and tissue mass increased over the summer in the shallow fluvial Lac Saint-Pierre but decreased in the upstream and downstream water masses. Standardized shell mass and strength of D. polymorpha was lowest where the mussels experienced salinity or low calcium. Although the response pattern of mass and glycogen content for D. polymorpha was spatially complex, mussels from the stressful oligohaline estuary population had the weakest shells and lowest glycogen content, even though their standardized tissue mass was the heaviest. This disparity in shell and tissue response suggests that some aspect of shell physiology alone may be limiting these mussels in estuarine environments. Tissue characteristics of D. polymorpha and D. bugensis were similar at the site where both were present, but the shell strength of D. bugensis was only equivalent to the weakest of D. polymorpha. We also conclude that lighter shells might make D. bugensis more susceptible to predation or mechanical damage but may also offer a bioenergetic advantage that is contributing to its rapid displacement of D. polymorpha where the two species co-occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号