首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Straying of salmonids in Lake Erie is not well understood despite the economic importance of these recreational fisheries, which are sustained by stocking approximately 2 million steelhead trout (Oncorhynchus mykiss) yearlings annually. The occurrence of straying in hatchery-reared salmonid populations can be influenced by stocking strategies, such as within-stream stocking location. Conneaut Creek provides a unique opportunity to evaluate the extent of release-site fidelity of adult steelhead trout from Lake Erie, because it is equally stocked by Ohio and Pennsylvania at different distances from the stream mouth. Adult steelhead trout were collected from two Conneaut Creek sites, Conneaut Ohio (2 km from Lake Erie) and Albion Pennsylvania (61 km from Lake Erie), in spring and fall of 2009. Elemental signatures of yearling otoliths measured by laser-ablation-inductively-coupled-plasma-mass-spectrometry were used to identify hatchery stocks. The state-specific hatchery stocks were identified with high confidence using discriminant analysis (Sr and Ba concentrations in nine otolith regions; Ohio 100.0%, Michigan 86.1%, New York 92.4%, and Pennsylvania 93.2% using jackknifed mean correct assignment). Adult steelhead trout (N = 174) collected in spring and fall at Conneaut Ohio included both Ohio and Pennsylvania-stocked fish, but no Ohio-stocked steelhead trout were collected at the Pennsylvania site in either season. Of the classified adult steelhead trout, 13.8% were identified as strays from other states (New York and Michigan). These results confirm strong release-site fidelity between Ohio and Pennsylvania stocked steelhead trout and provides fishery managers with sound scientific data to refine their stocking practices.  相似文献   

2.
Temperature may influence interactions between species by regulating energy balances of individuals. We conducted a laboratory study to determine whether temperature influenced the effects exerted by large rainbow trout on the growth of Atlantic salmon parr. Bioenergetic models were used to predict maintenance rations so that food resources were limiting over a range of temperatures; equal biomasses of rainbow trout were substituted for Atlantic salmon to evaluate the relative effect of interspecific interactions on Atlantic salmon growth. In the presence of rainbow trout, salmon growth increased as temperatures increased from 15°C to 25°C; no such temperature effect occurred for salmon maintained alone. Growth differences between salmon maintained with and without trout were highly significant at 25°C but not at 15°C. We conclude that the presence of trout depressed salmon growth at 15°C but not at higher temperatures, most likely a result of differences in thermal optima between these two species. Field data show that the proportion of stocked Atlantic salmon to wild rainbow trout coexisting in natural streams is a function of mean summer temperature. As stream temperatures increased, Atlantic salmon became increasingly favored over rainbow trout, but with a concomitant decrease in total salmonine biomass. We suggest that Atlantic salmon restoration programs focus more attention on relatively warm streams in watersheds where interactions with naturalized rainbow trout may occur.  相似文献   

3.
Economically and culturally important salmonid species often compete with Atlantic salmon (Salmo salar) released from stocking programs or that escaped during aquaculture production. Such competitive interactions may lower the individual fitness of these species by reducing survival and body growth. Here, we exposed juvenile brown trout (S. trutta), rainbow trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) to juvenile Atlantic salmon in artificial streams for 10 months. Survival and fitness-related traits of the four species were not negatively impacted by the presence of Atlantic salmon. The results suggest that brown trout and rainbow trout have better competitive abilities than Atlantic salmon, and that Chinook salmon and coho salmon have limited competitive interactions with Atlantic salmon. Although we discuss certain environmental conditions that can favor Atlantic salmon as a competitor at the juvenile life stage, Atlantic salmon may have little impact on the productivity of these four species.  相似文献   

4.
Wild lake trout recently began to appear in abundance in Lake Champlain after over 40 years of stocking, providing an opportunity to compare the seasonal diet of wild and stocked juveniles. We sampled 2,349 age-0 to age-3 lake trout collected in bottom trawls from April to November 2015–2018, and examined the relationship between diet and spatial heterogeneity in abundance of wild and stocked juveniles. Stocked fish were, on average, the size of wild fish one year older. Wild juveniles had fewer empty stomachs and more items per stomach than stocked fish at each age. Mysis diluviana dominated the diet of age-0 and age-1 wild lake trout until they began to consume fish in fall at age-1. In contrast, the diet of newly-stocked fish (age-1) comprised rainbow smelt (Osmerus mordax), slimy sculpin (Cottus cognatus), alewife (Alosa pseudoharengus), with Mysis only abundant in summer and fall. Number and composition of diet items varied among geographic areas of the lake but did not explain differences in abundance of wild or stocked fish by area. Diet overlap was high between wild and stocked fish for each age class at each season, except in fall at age-0. Differences in the diet of wild and stocked juveniles likely reflect effects of early rearing experience. Recruitment of wild lake trout depends on availability and abundance of Mysis, but our diet data do not provide insight to explain why recruitment is finally occurring after a protracted delay.  相似文献   

5.
Large-scale reintroduction programs for landlocked Atlantic salmon Salmo salar are ongoing in Lakes Ontario and Champlain. Commonly, these programs involve stocking hatchery reared juveniles into streams and thus, quantifying the in situ habitat use of stocked fish can help support these efforts. To examine habitat use, we stocked young-of-the-year (YOY) Atlantic salmon into 14 reaches of the Boquet River in the Lake Champlain Basin. The habitat used by YOY Atlantic salmon, measured from microhabitats that were used versus not used, differed between early and late summer for water depth. In early summer, YOY Atlantic salmon used a more narrow range of habitats compared to late summer. However, in both early and late summer, YOY most often used intermediate values in habitat variables except for water velocity in early summer. In early summer, YOY Atlantic salmon had the highest probability of using a water depth of 26 cm, a water velocity of 1 cm/sec, and a pebble substrate. In late summer, the probability of use was highest at a water depth of 61 cm, a water velocity of 11 cm/sec, and a pebble substrate. Our results show that stocked landlocked YOY Atlantic salmon use similar habitats to anadromous populations and may help managers when determining stocking locations or habitat alterations.  相似文献   

6.
Wild reproduction by stocked lake trout Salvelinus namaycush in Lake Ontario has yet to produce a self-sustaining population, requiring a reliance on stocking. Once released, age-1 juvenile lake trout are not typically surveyed until age-2, creating a gap in knowledge of fine-scale post-release behaviors. A method to track fine-scale movements and estimate mortality of juvenile lake trout could complement standard survey methods and benefit management decisions regarding stocking locations. We used acoustic telemetry to estimate post-stocking mortality and observe fine-scale spatial and temporal movements of 38 hatchery-reared, age-1 lake trout from an offshore stocking site in the eastern basin of Lake Ontario from 2017 to 2018. Cumulative post-stocking mortality was estimated at 5.3%, 10.5%, and 26.3% after one week, one month and one year, respectively. The majority of lake trout (68.4%) emigrated from the stocking location within two months and entered deep water (~50 m) once warm-water incursions at the stocking site exceeded lake trout thermal preferences (15 °C). Lake trout made large movements (i.e., median 1.9 km, maximum 12.4 km straight-line distance) within the first hour post-release and had an average swimming speed of 1.64 km?hr?1over the first day. There was no statistically significant relationship between total distance traveled and time of day, although distance traveled tended to be greater during crepuscular and dark periods compared to daylight. Our results provide a conservative estimate of post-release mortality and reveal behaviors of hatchery-reared juvenile lake trout that may be helpful when selecting stocking locations beneficial to restoration program goals.  相似文献   

7.
The Normandale Creek study area (2,531 m2)provides spawning and nursery grounds for lake-run coho salmon (Oncorhynchus kisutch), rainbow trout (Salmo gairdneri), and brown trout (Salmo trutta), In 1973–74, 59 adult salmonids (58% rainbow trout, 39% coho salmon, and 3% brown trout) ascended the stream between 31 October and 12 May. Upstream movements were significantly related to peak stream discharge (r = 0.21) and highly significantly related to discharge occurring on the day following the peak freshet (r = 0.34). Despite a highly significant correlation (r = 0.29) between flow and water temperature, the latter factor is not significantly related with upstream movement of adult fish. Coho salmon spawned at water temperatures of 1 to 10° C between 2 November and 19 December, rainbow trout at 1 to 15° C between 9 November and 14 May, and brown trout at 7° C between 4 and 5 November. Of 86 nests constructed, 60% were disturbed by re-use or sand deposition. From a calculated deposition of 90,403 ova, it is estimated that some 22% survived to emergence.  相似文献   

8.
Alewife (Alosa pseudoharengus) predation may be an important mortality source on lake trout fry (Salvelinus namaycush), and could affect the success of lake trout restoration in the Great Lakes. This study tested the prediction that fry showing typical swimming and avoidance behavior over artificial reefs will differ in survival when alewives are present versus when alewives are absent. Six tanks with cobble substrate were each stocked with 153 lake trout fry (density = 131 m− 2), a density comparable to that recorded at Stony Island reef, Lake Ontario during the early 1990s. Four treatment tanks each contained ten alewives (density = 8 m− 2) and two control tanks contained no alewives. After 12 days, mean recovery of fry was less in treatment tanks (31.5 fry per tank) than in control tanks (150 fry per tank; P < 0.009). Fry mortality in control tanks was about 2% in contrast to 46 to 91% mortality in tanks containing alewives. Alewife predation effects were evident early in the experiment as the mean daily capture of fry by traps set in each tank was always lower after day two in treatment tanks than in control tanks. The rate of consumption of lake trout fry by alewives ranged from 0.57 to 1.16 fry alewife− 1 day− 1 (mean = 0.99 ± 0.141; median = 1.12). The results of this study support the hypothesis that predation by alewives could cause a high level of lake trout fry mortality, and thus affect natural recruitment of lake trout and the success of population rehabilitation.  相似文献   

9.
Changes in a population of rainbow smelt (Osmerus mordax) in the Apostle Islands region of Lake Superior were chronicled over a 32-yr time series, 1974-2005. At the beginning of the time series, rainbow smelt was the predominant prey species, abundance of lake herring (Coregonis artedi) was very low, and the dominant predator was stocked lake trout (Salvelinus namaycush). Following a period of successful lake trout stocking in the 1970s, the rainbow smelt population declined sharply in 1980, largely through mortality of adult fish and subsequent poor recruitment. In the succeeding 4 years, rainbow smelt populations reached historic low levels, resulting in reduced food resources for both wild and stocked lake trout. During 1985–1990 lake herring stocks began a spectacular recovery following the appearance of a very strong 1984 year class and subsequent 1988, 1989, and 1990 year classes. Rainbow smelt benefited from the high abundance of young lake herring as an alternate prey source for lake trout and showed a partial recovery in the late 1980s. However, a growing lake trout population coupled with an 8-yr period of low herring reproduction after 1990 resulted in a diminished rainbow smelt population dominated by age-1 and 2 fish and showing a pattern of alternating recruitment attributed to cannibalism. Low productivity of rainbow smelt and intermittent production of herring over the past decade has left lake trout populations with a diminished prey base. Although lake trout recovery benefited from the presence of rainbow smelt as a prey resource, the Lake Superior fish community was fundamentally altered by the introduction of rainbow smelt.  相似文献   

10.
Fisheries managers and anglers in Minnesota have long been concerned that reproduction in the wild by a hatchery strain of rainbow trout (Oncorhynchus mykiss), called kamloops, could reduce the fitness of naturalized steelhead (migratory rainbow trout) populations in Lake Superior. A previous study found no evidence of kamloops introgression, but a new evaluation is warranted in light of continued stocking and genetic advancements over the past 25 years. We used genotypes from 10 microsatellite DNA loci to assess kamloops ancestry in adult and age-0 rainbow trout samples from 40 streams in Minnesota, one stream in Wisconsin, and two adult broodstocks. We also evaluated genetic population structure for impacts of kamlooops introgression. Overall, the average estimated kamloops ancestry was 8% (range 2–44%) in age-0 juveniles and 4% (1–19%) in adults. The average percentages of kamloops descendants in age-0 and adults were 8% (0–54%) and 5% (0–40%), respectively. Kamloops descendants were found in many Minnesota streams and in Wisconsin’s Bois Brule River, but were most prevalent in streams near the source hatchery, near recent stocking locations, and in lower reaches of longitudinally sampled streams. Feral steelhead broodstock had 9% and 6% kamloops descendants in two years while captive broodstock had no kamloops descendants. Minnesota’s populations showed little spatial genetic structure but were distinct from the Bois Brule population and from kamloops, which indicated that kamloops introgression had not substantially altered structure. Kamloops introgression into Minnesota steelhead populations and impacts on other jurisdictions contributed to the decision to discontinue the kamloops stocking program.  相似文献   

11.
The trophic ecology of juvenile salmonids in nearshore Lake Ontario is not well understood. We used stomach content and stable isotope diet and niche metrics, as well as condition metrics to understand the trophic ecology of juvenile Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss), and lake trout (Salvelinus namaycush). Salmonids had comparable length-weight slopes and stomach mass, and allometric patterns existed between fork-length and both relative stomach content mass and energy density for all species. Interspecific differences existed with respect to diet, and the magnitude of difference generally increased with increasing body size. Small sized salmonid (fork length < 100 mm) diets mainly consisted of Diptera (% volume = 66 – 100; prey isotope %: 11.7 – 78.4), while large sized salmonids (fork length 200 – 300 mm) consumed fish (% volume = 20–100; prey isotope % = 21.5 – 42.7). Salmonids exhibited high interspecific niche overlap, with lake trout (SEAB = 22.9 ‰2) and brown trout (18.6 ‰2) having the largest isotopic niche size, and Atlantic salmon having the smallest (2.7 ‰2). Our study addressed a knowledge gap in trophic ecology between mostly stream-dwelling juvenile and open lake adult salmonid life stages, revealing differences in diet but comparable condition metrics which suggests different strategies to optimise performance in the nearshore environment.  相似文献   

12.
The Chattahoochee River near Atlanta, Georgia, USA is a stocked tailwater trout (Salmonidae) fishery and rainbow trout (Oncorhynchus mykiss) have been found to spawn in selected warmwater tributary streams. Because these stocked fish enter non‐stocked waters and produce offspring that reside year‐round, they are technically invasive. One tributary in particular, Cabin Creek, has had documented spawning activity for three consecutive years since the stream was monitored. We chronicled the production of the 2006 year‐class of rainbow trout in this small, warmwater tributary to the Chattahoochee River. Based on electrofishing samples and otolith microstructure, the 2006 year‐class of trout were produced from spawning that occurred from 6 February 2006 to 10 March 2006. Fish from this year‐class grew from an average size of 34.28 mm total length (TL) on 26 April 2007 to 102.00 mm TL on 14 May 2007, which is an average increase in size of 67.72 mm over a 383‐day period or 0.18 mm/day. Water temperatures in the stream were near the lethal limits for rainbow trout, reaching a maximum of 24.57°C on 1 August 2006 and a maximum 7‐day average maximum (M7DAM) of 22.99°C on 7 August 2006. The watershed of Cabin Creek is one of the least urbanized in the area, protected from development within lands owned by the National Park Service, with high levels of forest cover, which facilitates rainbow trout young‐of‐year survival through the summer. Thus, the documented spawning and young‐of‐year survival of this invasive species appears to be indicative of high forested watershed integrity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Atlantic salmon (Salmo salar) are native to Lake Ontario; but their populations severely declined by the late 1800s due to human influences. During the early to mid-1900s, Atlantic salmon were stocked throughout the Great Lakes in effort to reestablish them into Lake Ontario and introduce the species into the upper Great Lakes. However, these efforts experienced minimal success. In 1987, Lake Superior State University and the Michigan Department of Natural Resources began stocking Atlantic salmon in the St. Marys River, Michigan, which has resulted in a successful, self-supporting hatchery operation and stable recreational Atlantic salmon fishery. Possibly due to a combination of competition with other salmonid species for spawning habitat, prey selection causing detrimental effects on early life stages and high rates of early mortality syndrome, Atlantic salmon appeared to be severely limited in their ability to naturally reproduce within the upper Great Lakes. In 2012, the first unequivocal documentation of naturally reproduced Atlantic salmon in the St. Marys River was recorded, downstream from the compensation works and parallel to the Soo Locks in Sault Ste. Marie, Michigan.  相似文献   

14.
Bloater, Coregonus hoyi, are deepwater planktivores native to the Laurentian Great Lakes and Lake Nipigon. Interpretations of commercial fishery time series suggest they were common in Lake Ontario through the early 1900s but by the 1950s were no longer captured by commercial fishers. Annual bottom trawl surveys that began in 1978 and sampled extensively across putative bloater habitat only yielded one individual (1983), suggesting that the species had been locally extirpated. In 2012, a multiagency restoration program stocked bloater into Lake Ontario from gametes collected in Lake Michigan. From 2012 to 2020, 1,028,191 bloater were stocked into Lake Ontario. Bottom trawl surveys first detected stocked fish in 2015, and through 2020 ten bloater have been caught (total length mean = 129 mm, s.d. = 44 mm, range: 96–240 mm). Hatchery applied marks and genetic analyses confirmed the species identification and identified stocking location for some individuals. Trawl capture locations and acoustic telemetry suggested that stocked fish dispersed throughout the main lake within months or sooner, and the depth distribution of recaptured bloater was similar to historic distributions in Lake Ontario and other Great Lakes. Predicted bloater trawl catches, based on modeled population abundance and trawl survey efficiency, were similar to observed catches, suggesting that post-stocking survival is less than 20% and contemporary bottom trawl surveys can quantify bloater abundance at low densities and track restoration.  相似文献   

15.
Stomachs of trout and salmon (n = 1,904) were collected from fish registered at fishing tournaments held in New York State waters of Lake Ontario between April and September 1983 and 1984. Numbers of adult-sized fish containing identifiable food items were 323 lake trout (Salvelinus namaycush), 289 brown trout (Salmo trutta), 24 rainbow trout (S. gairdneri), 164 coho salmon (Oncorhynchus kisutch), and 63 chinook salmon (O. tschawytscha) Proportional similarity in diet between pairs of species was high and normally exceeded 0.70; diet composition of individual species was similar between years. Alewives (Alosa pseudoharengus) were the main prey of all species during all months and were normally 110–149 mm in standard length. Rainbow smelt (Osmerus mordax) was the second most common prey eaten but was generally found in fewer than 20% of the stomachs examined during any month. Diet diversity was generally higher during April-May than during July-September for coho salmon, lake trout, and brown trout. Larger brown trout ate larger alewife in 1983 but not in 1984. Results suggest that the five trout and salmon species in Lake Ontario are potential competitors.  相似文献   

16.
Pacific salmon were introduced to the Great Lakes in the 1960s and now support major recreational fishery. Population declines resulting from invasive species have prompted agencies to consider diversifying sport fisheries through stocking. Atlantic salmon are native to Lake Ontario, but a small fishery has developed in northern Lake Huron since the 1990s that appears suited to the Lake Huron food web leading to requests for increased stocking by anglers and consideration by agencies. However, no study has evaluated the trophic ecology of Atlantic salmon in relation to other salmonine predators in northern Lake Huron. In this study, we used stable isotopes of carbon (δ13C) and nitrogen (δ15N), along with mercury (Hg) concentrations to assess resource use, niche overlap, and contaminant accumulation in Atlantic salmon compared to select Lake Huron predators. Atlantic salmon exhibited considerable niche overlap with Chinook and coho salmon but were strongly differentiated from lake trout. In addition, we observed that Atlantic salmon had similar Hg concentrations as coho but were lower than both Chinook salmon and lake trout. Based upon the relationship between fish size, δ15N, and Hg, Atlantic salmon bioaccumulate Hg similarly to Pacific salmon but likely have lower consumptive demands than Chinook salmon. Continued attention should be placed on understanding how Atlantic salmon fit into the current Lake Huron food web in order to evaluate the long-term efficacy of the Atlantic salmon stocking program.  相似文献   

17.
The habitat use and diet of juvenile Atlantic salmon Salmo salar was examined in the South Sandy Creek drainage that discharges into eastern Lake Ontario. Subyearling salmon were stocked in early May during two consecutive years, and habitat and diet evaluations were made in mid-July and mid-October in 2005 and 2006. Both subyearling and yearling Atlantic salmon occupied deeper and faster areas that had more cover and larger sized substrate materials than was present, on average, within the study reach. Differences in habitat use between subyearling and yearling salmon only occurred in summer. Principal component analysis showed that of the habitat variables examined, the amount of cover and size of substrate were more important to juvenile salmon in summer, whereas depth and velocity were more important in the fall. Trichopteran larvae (mainly hydropsychids) dominated the diet of juvenile Atlantic salmon, and parr were feeding most heavily from the substrate as compared to the drift. The juvenile ecology of this re-introduced population of Atlantic salmon is consistent with that reported in other studies throughout the species native range.  相似文献   

18.
After 42 years of stocking in Lake Champlain, recruitment of wild juvenile lake trout (Salvelinus namaycush) was first observed in 2015. Abundance of wild lake trout juveniles was spatially heterogeneous. Recruitment of wild fish to age-1 and subsequent survival are likely related to growth including overwinter growth. We hypothesized that growth potential or growth-related mortality of wild and stocked fish may explain spatial differences in abundance. We collected juvenile (age-0 to 3) lake trout by bottom trawling in the central, north, and south Main Lake every 2–4 weeks during the ice-free season, 2015–2018. The percentage of wild juveniles increased from 27.8% of the total catch in 2015 to 65.7% in 2018. Rates of growth in length and change in condition were compared in wild versus stocked lake trout, among sampling areas, and between seasons (sampling season relative to winter). Wild juveniles grew equally or faster in length than stocked juveniles at the same age, but changed more slowly in condition. There was a higher percentage of wild juveniles in the central sampling area than the north and south, but no differences in growth among sampling areas. Wild and stocked fish grew in length over winter, but most cohorts (6 of 7) maintained or increased condition. Results indicate high growth potential of wild juvenile lake trout and progress toward population restoration.  相似文献   

19.
Lake Ontario supports a diversity of native and non-native salmonids which are managed largely through stocking practices. Ecological changes (e.g., invasive species) altering the food web structure accompanied with shifts in prey abundance, necessitate understanding the trophic niches of Lake Ontario salmonids to aid in management. The objectives of this study were to quantify salmonid (5 species) trophic niches and dietary proportions using stable isotope ratios (δ13C and δ15N) of a large sample set (adult fish (>300?mm; n?=?672) and key offshore prey (5 species, n?=?2037)) collected across Lake Ontario in 2013. Estimates of prey based on stable isotope ratios were similar to stomach contents. Based on stable isotope ratios, non-native prey dominated salmonid diet; in particular alewife (Alosa pseudoharengus) constituted the majority (0.31 to 0.93) of all salmonid diets, and round goby (Neogobius melanostomus) contributed 0.26 and 0.19 of brown trout (Salmo trutta) and lake trout (Salvelinus namaycush) diets, respectively. Trophic niche overlap was high between all salmonids, except lake trout. The largest trophic niche overlap occurred between Chinook (Oncorhynchus tshawytscha), coho (Oncorhynchus kisutch), and Atlantic salmon (Salmo salar), and their reliance on alewife infers a strong pelagic foraging strategy. Lake, brown and rainbow (Oncorhynchus mykiss) trout had larger and/or more distinct trophic niches indicative of a more variable diet across individuals and utilizing different foraging strategies and/or habitats. Overall, Lake Ontario salmonids maintained a high reliance on alewife, and their potential for plasticity in diet provides important information to management regarding population sustainability.  相似文献   

20.
The habitat use, diet composition, and feeding periodicity of subyearling Atlantic salmon (Salmo salar) was examined during both day and night periods during summer in tributaries of Lake Ontario. The amount of cover used was the major habitat variable that differed between day and night periods in both streams. At night subyearling Atlantic salmon were associated with significantly less cover than during the day. Principal Component Analysis showed that habitat selection of subyearling Atlantic salmon was more pronounced during the day in both streams and that salmon in Orwell Brook exhibited more diel variability in habitat use than salmon in Trout Brook. Subyearling salmon fed primarily from the benthic substrate on baetids, chironomids, and leptocerids. There was a substantial amount of diel variation in diet composition with peak feeding occurring from 0400 h to 0800 h on July 21–22, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号