首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Six beam–column (B–C) joints were constructed according to the existing practice in Jordan and tested under cyclic lateral loading to determine the effect of using high performance steel fiber reinforced concrete (HPFRC) in place of conventional concrete in the joint region. The properties of ultimate strength, ductility, energy dissipation capacity, and joint stiffness of the reference concrete specimens were compared with those containing different amounts of brass-coated (BCSF) or hooked steel fibers (HSF). It was determined that the steel fiber concrete specimens exhibited three times higher load levels, 20 times larger energy dissipation, and two times slower stiffness degradation compared to the reference concrete specimens. Using hooked steel fibers showed a significant increase (three times) in the maximum load carrying capacity and in the initial secant stiffness compared to reference specimens.  相似文献   

2.
An experimental program was conducted to investigate the effect of stresses and cracks, caused by alkali-silica reaction (ASR) and freezing and thawing (F/T), on bond between reinforcing steel and concrete. Pullout test cylinders, reinforced with 18 mm steel bars, were used to evaluate bond behavior. Concrete prisms (50 × 50 × 300 mm) were also cast to evaluate expansion and reduction in ultrasonic velocity due to ASR and F/T cycles, respectively. Specimens were cured for 40 days before being either immersed in sodium hydroxide solution of 0.5 normality in order to accelerate ASR, or subjected to different cycles of F/T. Bond behavior, expansion, and ultrasonic pulse velocity tests were carried out as ASR progressed or under F/T cycles.The progress of ASR resulted in significant losses in critical bond stress and ultimate bond strength capacity reaching as high as 44% and 24%, respectively, accompanied by a significant increase in free-end slip at failure. The loss in bond due to ASR was higher for specimens prepared using concrete with lower concrete strength and higher percentage of reactive aggregate. F/T action caused a significant reduction in critical bond stress and ultimate bond strength that reached as high as 100% and 55%, respectively, and an increase in free-end slip at failure. Neither ASR nor F/T cycles affected trends in the behavior of bond stress versus free end slip curves.  相似文献   

3.
The effects of elevated temperatures and cooling regimes on the residual (after cooling) bond strength between concrete and steel bars are investigated. For this study, ribbed steel bars of 8 mm diameter are embedded in to C20 and C35 concrete blocks with embedment lengths of 6, 10 and 12 cm. Unsealed specimens are heated to 12 different temperatures ranging between 50 and 700 °C and then cooled in water or in air. Pull-out tests are carried out on the specimens, and the effects of elevated temperatures on the residual bond strength are investigated by comparing the results against unheated specimens.  相似文献   

4.
This paper presents the results of an extensive experimental study on the compressive and splitting tensile strength of high-strength concrete with and without polypropylene (PP) fibers after heating to 600 °C. Mixtures were prepared with water to cementitious materials ratios of 0.40, 0.35, and 0.30 containing silica fume at 0%, 6%, and 10% cement replacement and polypropylene fibers content of 0, 1, 2, and 3 kg/m3. A severe strength loss was observed for all of the concretes after exposure to 600 °C, particularly the concretes containing silica fume despite their good mechanical properties at room temperature. The range of 300–600 °C was more critical for concrete having higher strength. The relative compressive strengths of concretes containing PP fibers were higher than those of concretes without PP fibers. The splitting tensile strength of concrete was more sensitive to high temperatures than the compressive strength. Furthermore, the presence of PP fibers was more effective for compressive strength than splitting tensile strength above 200 °C. Based on the test results, it can be concluded that the addition of 2 kg/m3 PP fibers can significantly promote the residual mechanical properties of HSC during heating.  相似文献   

5.
This paper presents an experimental investigation on the performance of self-compacting concrete (SCC) subjected to high temperatures. For this purpose, Portland cement was replaced with fly ash (FA) and granulated blast furnace slag (GBFS) in various proportions with and without polypropylene (PP) fibers and the PP fiber content was 2 kg/m3 for the mixtures that contained fibers. When the specimens were 56 days old, they were heated to elevated temperatures (200, 400, 600 or 800 °C). Afterword, tests were conducted to determine the weight loss and the compressive strength. Moreover, the change in the ultrasonic pulse velocity (UPV) was determined, and observations for surface cracks were made after the specimens were exposed to elevated temperatures. A severe strength loss was observed for all of the concretes after 600 °C, particularly for the concretes that contained PP fibers; however, the fibers reduced and eliminated the risk of explosive spalling. Based on the test results, it can be concluded that the performance of FA concrete is better than that of the GBFS concrete.  相似文献   

6.
基于均匀分布压力作用的厚壁圆筒模型,将钢筋混凝土拉拔试件变形钢筋周围的受高温损伤混凝土保护层按应力状态分为内外两部分,对内层开裂混凝土认为其产生弥散裂缝,并考虑其抗拉软化特性,同时引入高温后混凝土弹性模量、抗拉强度、断裂能的劣化,通过对受高温损伤钢筋-混凝土间黏结破坏时的极限状态进行理论分析,推导得出高温后钢筋-混凝土界面黏结强度的计算方法,建立了与钢筋、混凝土的尺寸、材性相关的高温后钢筋-混凝土界面黏结强度模型。基于混凝土开裂半径与端部滑移之间的线性关系,建立了高温后界面黏结应力-端部滑移关系。对模型计算结果与已有高温后钢筋与混凝土黏结性能试验所得数据进行比较,共对比了118组黏结强度、15组黏结应力-端部滑移关系。结果表明:该理论分析模型具有很高的准确性,可广泛适用于不同参数拉拔试验的高温后界面黏结强度的分析与预测。  相似文献   

7.
This paper presents the results of an experimental study investigating the effects of steel fibers on the mechanical properties of concrete and the enhancement of bond strength of prestressing strands in steel fiber reinforced concrete (SFRC). The first part of the experimental program consisted of compression, tension and flexural tests on SFRC. Two types of steel fibers with 30 mm and 60 mm fiber lengths were used with five different fiber contents. The second part of the study consisted of simple pull-out tests on 12.7 mm and 15.2 mm diameter seven-wire untensioned prestressing strands embedded in concrete blocks. The pull-out tests were conducted with two different fiber lengths and five different fiber contents for each strand diameter. The steel fibers were observed to improve the pull-out resistance of strands by controlling the crack growth inside concrete blocks.  相似文献   

8.
This paper highlights the structural performance of steel–concrete composite girders strengthened using advanced composite laminates. Nonlinear 3-D finite element models have been developed to investigate the flexural behaviour and load carrying capacity of the girders. The composite laminates comprised carbon fibre reinforced polymer (CFRP) plates and sheets as well as steel reinforced polymer (SRP) sheets. The elastic modulus and ultimate tensile strength of the laminates varied from low to high 60–300 GPa and 700–3100 MPa, respectively. The nonlinear material properties of the strengthened composite girder components comprising concrete, structural steel beam, reinforcement bars, adhesive and composite laminates were incorporated in the finite element model. The interfaces between the composite girder components were also considered allowing the contact and bond behaviour to be modelled and the different components to retain its profile during the deformation of the strengthened composite girder. Furthermore, the load-slip characteristic of headed stud shear connectors was incorporated in the finite element models based on previous experimental and numerical investigations conducted by the author. The finite element models have been validated against published tests on composite girders strengthened using different advanced composite laminates and having different cross-section geometries, lengths, layers of laminates with different elastic moduli and ultimate tensile strengths, concrete strengths and structural steel strengths. The load carrying capacity of strengthened composite girders, load–vertical displacement behaviour and failure modes were predicted from the finite element analyses and compared against test results. Parametric studies were conducted to study the effects on the load carrying capacity and structural behaviour of strengthened composite girders owing to the change in the composite laminate elastic modulus, number of laminate layers, concrete strengths and structural steel strengths. The study has shown that the increase in the load carrying capacity and ductility of strengthened composite girders due to the increase in steel beam strength is significant with high strength concrete slab. Also, it has been shown that the increase in concrete strength offers a considerable increase in the initial stiffness of strengthened composite girders, while the increase in structural steel strength offers a considerable increase in the stiffness of strengthened composite girder in the post-yielding stage.  相似文献   

9.
In this study, a new approach is developed for predicting stress–strain curve of steel fiber-reinforced concrete (SFRC) under compression, by use of fuzzy logic system (FLS). In the coverage of study, firstly, experimental studies were carried out. Cylindrical specimens were prepared in size of Ø150×300 mm with and without steel fiber. Two different steel fiber types (both are hooked end) were used as ratios 0 (control), 15, 30, 45 and 60 kg/m3. The stress–strain curves were defined for 28 ages of the cylindrical specimens. Secondly, the stress–strain curves for SFRC were modeled by use of fuzzy logic approach, and the results that were obtained from experiments and modeling were compared. As a result close relationship between both results was seen.  相似文献   

10.
In this study, the results of polypropylene fibers reinforced concrete properties have been presented. The compressive strength, permeability and electric resistivity of concrete samples were studied. The concrete samples were made with different fibers amounts from 0 to 2 kg m−3. Also, the samples fabricated with coral aggregate and siliceous aggregate were examined and compared. The samples with added polypropylene fibers of 1.5 kg m−3 showed better results in comparison with the others. Moreover, coral aggregate concrete showed less electric resistivity and less compressive strength in comparison with samples fabricated of siliceous aggregates. It is concluded that the coral aggregates are not suitable for making concrete or using in concrete structures in the onshore atmosphere.  相似文献   

11.
The effect of replacement of fine and coarse aggregates with recycled glass on the fresh and hardened properties of Portland cement concrete at ambient and elevated temperatures is studied. Percentages of replacement of 0–100% of aggregates with fine waste glass (FWG), coarse waste glass (CWG), and fine and coarse waste glass (FCWG) were considered. Soda-lime glass used for bottles was washed and crushed to fine and coarse aggregate sizes for use in the concrete mixes. Samples were cured under 95% RH at room temperatures (20–22 °C), heated in the oven to the desired temperatures, allowed to cool to ambient temperatures, and then tested for their residual compressive strength. The compressive strength of the concrete samples made with waste glass was measured at temperatures up to 700 °C. Moreover, the effect of the percentages of replacement with recycled glass on the slump values and initial and final setting time of concrete has also been measured.  相似文献   

12.
In this paper, post-heating bond behavior between high-grade rebar and C80 high-strength concrete (hereafter, HSC) is studied. The high-grade rebar is HRBF500 fine grained steel with a yield strength of 500 MPa and the concrete grade C80 denotes compressive strength not lower than 80 MPa. First, the residual mechanical behavior of both high-grade rebar and HSC were tested after fire exposure. Second, the beam bond test was carried out to study the bond behavior between high-grade rebar and HSC after exposed heating at 200 °C, 400 °C, 500 °C and 600 °C, respectively. During the bond test, the influence of temperature, bond length, and some construction measurements on the bond–slip behavior were compared and evaluated. The investigation demonstrates that (1) the bond strength between high-grade rebar and HSC decreases while the peak slip increases with the elevated temperature, especially when the temperature exceeds 400 °C and (2) the confinement effect of steel wire mesh can help to improve rebar׳s bond behavior. Third, the bond–slip model between high-grade rebar and HSC for post-heating is proposed.  相似文献   

13.
The purpose of this study is to improve the ductility of pumice lightweight aggregate concrete by incorporating hybrid steel and polypropylene fibers. The changes in mechanical properties and also bulk density and workability of pumice lightweight aggregate concrete due to the addition of hybrid steel and polypropylene fibers have been studied. The properties were investigated include bulk density and workability of fresh concrete as well as compressive strength, flexural tensile strength, splitting tensile strength and toughness of hardened concrete. Nine concrete mixtures with different volume fractions of steel and polypropylene fibers were tested. A large increase in compressive and flexural ductility and energy absorption capacity due to the addition of steel fibers was observed. Polypropylene fibers, on the other hand, caused a minor change in mechanical properties of hardened concrete especially in the mixtures made with both steel and polypropylene fibers. These observations provide insight into the benefits of different fiber reinforcement systems to the mechanical performance of pumice lightweight aggregate concrete which is considered to be brittle. These results provide guidance for design of concrete materials with reduced density and enhanced ductility for different applications, including construction of high-rise, earthquake-resistant buildings.  相似文献   

14.
通过混凝土试块中心的钢筋拉拔试验,研究了机制砂原料形态、石粉含量和混凝土强度对变形钢筋与机制砂混凝土黏结性能的影响规律.机制砂原料形态为碎石和卵石,石粉含量(质量分数)为5%,9%和13%,混凝土强度等级为C30,C40,C50和C60,月牙肋变形钢筋直径为12mm.结果表明:所有试件均因钢筋肋前的混凝土齿发生剪切破坏而使钢筋拔出,其黏结滑移关系曲线可以通过特征点的黏结应力和滑移值表达为四阶段变化关系;变形钢筋与混凝土的黏结性能随着混凝土强度的提高而增加,钢筋与碎石破碎机制砂混凝土的黏结性能优于钢筋与卵石破碎机制砂混凝土;石粉含量的增加会降低黏结强度并使得黏结滑移关系曲线的内劈裂段延长和下降段变陡.根据试验统计分析,建立了变形钢筋与机制砂混凝土的黏结滑移本构关系.  相似文献   

15.
Bond to plain and deformed steel rebars was measured by pull-out testing along the height of wall-shaped specimens. The performances of steel, polypropylene and glass fiber reinforced concrete were compared with non-fiber concrete. The results did not indicate significant difference in the behavior of the concretes with plain bars. The differences in the bond with deformed bar were correlated with the cracking patterns as a function of fiber type and casting position. Steel fiber concrete had the highest bond reduction with concrete depth despite the highest bond strength, which was attributed to the segregation of steel fibers.  相似文献   

16.
矩形钢管自密实混凝土的钢管-混凝土界面粘结性能研究   总被引:2,自引:2,他引:0  
杨有福  韩林海 《工业建筑》2006,36(11):32-36
钢管混凝土构件在受力过程中,钢管及核心混凝土间的粘结性能一直是设计和研究人员关注的热点问题之一。合理确定钢管与核心混凝土间的粘结强度,是进行钢管混凝土梁柱节点设计的重要前提。通过对矩形钢管自密实混凝土构件界面粘结性能进行的试验研究,对钢管自密实混凝土与钢管普通混凝土进行比较。结果表明,自密实混凝土可以提高钢管与混凝土间的界面粘结强度。最后,提出粘结强度的简化计算公式和粘结应力-相对滑移关系的简化模型。  相似文献   

17.
This study aims in examining the influence of the paste yield stress and compressive strength on the behaviour of fibre-reinforced concrete (FRC) versus direct shear. The parameters studied are the steel fibre contents, the aspect ratio of fibres and the concrete strength. Prismatic specimens of dimensions 10 × 10 × 35 cm made of concrete of various yield stress reinforced with steel fibres hooked at the ends with three fibre volume fractions (i.e. 0%, 0.5% and 1%) and two aspects ratio (65 and 80) were tested to direct shear. Three types of concretes with various compressive strength and yield stress were tested, an ordinary concrete (OC), a self-compacting concrete (SCC) and a high strength concrete (HSC). The concrete strengths investigated include 30 MPa for OC, 60 MPa for SCC and 80 MPa for HSC.The results show that the shear strength and ductility are affected and have been improved very significantly by the fibre contents, fibre aspect ratio and concrete strength. As the compressive strength and the volume fraction of fibres increase, the shear strength increases. However, yield stress of concrete has an important influence on the orientation and distribution of the fibres in the matrix. The ductility was much higher for ordinary and self-compacting concretes (concrete with good workability). The ductility in direct shear depends on the fibre orientation and is significantly improved when the fibres are perpendicular to the shear plane. On the contrary, for concrete with poor workability, an inadequate distribution and orientation of fibres occurred, leading to a weak contribution of the fibres to the direct shear behaviour.  相似文献   

18.
Eccentrically loaded concrete encased steel composite columns   总被引:1,自引:0,他引:1  
This paper presents a nonlinear 3-D finite element model for eccentrically loaded concrete encased steel composite columns. The columns were pin-ended subjected to an eccentric load acting along the major axis, with eccentricity varied from 0.125 to 0.375 of the overall depth (D) of the column sections. The model accounted for the inelastic behaviour of steel, concrete, longitudinal and transverse reinforcement bars as well as the effect of concrete confinement of the concrete encased steel composite columns. The interface between the steel section and concrete, the longitudinal and transverse reinforcement bars, and the reinforcement bars and concrete were also considered allowing the bond behaviour to be modelled and the different components to retain its profile during the deformation of the column. The initial overall geometric imperfection was carefully incorporated in the model. The finite element model has been validated against existing test results. The concrete strengths varied from normal to high strength (30–110 MPa). The steel section yield stresses also varied from normal to high strength (275–690 MPa). Furthermore, the variables that influence the eccentrically loaded composite column behaviour and strength comprising different eccentricities, different column dimensions, different structural steel sizes, different concrete strengths, and different structural steel yield stresses were investigated in a parametric study. Generally, it is shown that the effect on the composite column strength owing to the increase in structural steel yield stress is significant for eccentrically loaded columns with small eccentricity of 0.125D. On the other hand, for columns with higher eccentricity 0.375D, the effect on the composite column strength due to the increase in structural steel yield stress is significant for columns with concrete strengths lower than 70 MPa. The strength of composite columns obtained from the finite element analysis were compared with the design strengths calculated using the Eurocode 4 for composite columns. Generally, it is shown that the EC4 accurately predicted the eccentrically loaded composite columns, while overestimated the moment.  相似文献   

19.
确定无纤维或低纤维掺量的不同强度等级混凝土的爆裂临界温度,以及防止火灾时不同强度混凝土爆裂所需聚丙烯(PP)纤维或钢纤维最小掺量,对混凝土结构抗火设计具有重要意义。为此,对国内外大量高温爆裂试验研究结果进行分析,获得了爆裂临界温度与混凝土抗压强度(23~238MPa)的关系曲线,发现混凝土抗压强度越高,爆裂临界温度越低。通过大量试验数据拟合得到了防爆裂PP纤维掺量、钢纤维掺量与混凝土抗压强度的关系曲线,发现随着混凝土抗压强度的提高,所需防爆裂PP纤维掺量呈线性增长,而所需防爆裂钢纤维掺量呈指数增长。按EN 1992-1-2:2004《欧洲混凝土抗火设计规范》建议值,PP纤维掺量为0.22%的防爆裂混凝土,火灾下仍可能发生爆裂;按所提出计算式计算的掺量,则可有效降低火灾下混凝土爆裂的风险。  相似文献   

20.
为研究轻钢与聚苯颗粒(EPS)混凝土界面黏结滑移的作用机理,制作了20个轻钢EPS混凝土短柱试件进行拉拔试验,研究EPS混凝土强度、钢管埋置长度及保护层厚度对轻钢与EPS混凝土黏结性能的影响.结果表明:轻钢与EPS混凝土的黏结应力要比钢筋与普通混凝土的黏结应力小;峰值黏结应力随EPS混凝土强度和保护层厚度的增加有所提高;钢管埋置长度的变化对峰值黏结应力的影响不明显.基于试验结果,提出了轻钢与EPS混凝土的三段式黏结-滑移本构模型,计算值与试验值基本吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号