共查询到2条相似文献,搜索用时 0 毫秒
1.
Vo Ngoc DieuWeerakorn Ongsakul 《International Journal of Electrical Power & Energy Systems》2011,33(3):522-530
This paper proposes an augmented Lagrange Hopfield network based Lagrangian relaxation (ALHN-LR) for solving unit commitment (UC) problem with ramp rate constraints. ALHN-LR is a combination of improved Lagrangian relaxation (ILR) and augmented Lagrange Hopfield network (ALHN) enhanced by heuristic search. The proposed ALHN-LR method solves the UC problem in three stages. In the first stage, ILR is used to solve unit scheduling satisfying load demand and spinning reserve constraints neglecting minimum up and down time constraints. In the second stage, heuristic search is applied to refine the obtained unit schedule including primary unit de-commitment, unit substitution, minimum up and down time repairing, and de-commitment of excessive units. In the last stage, ALHN which is a continuous Hopfield network with its energy function based on augmented Lagrangian relaxation is applied to solve constrained economic dispatch (ED) problem and a repairing strategy for ramp rate constraint violations is used if a feasible solution is not found. The proposed ALHN-LR is tested on various systems ranging from 17 to 110 units and obtained results are compared to those from many other methods. Test results indicate that the total production costs obtained by the ALHN-LR method are much less than those from other methods in the literature with a faster manner. Therefore, the proposed ALHN-LR is favorable for large-scale UC implementation. 相似文献
2.
This paper develops a new dynamic programming based direct computation Hopfield method for solving short term unit commitment (UC) problems of thermal generators. The proposed two step process uses a direct computation Hopfield neural network to generate economic dispatch (ED). Then using dynamic programming (DP) the generator schedule is produced. The method employs a linear input–output model for neurons. Formulations for solving the UC problems are explored. Through the application of these formulations, direct computation instead of iterations for solving the problems becomes possible. However, it has been found that the UC problem cannot be tackled accurately within the framework of the conventional Hopfield network. Unlike the usual Hopfield methods which select the weighting factors of the energy function by trials, the proposed method determines the corresponding factor using formulation calculation. Hence, it is relatively easy to apply the proposed method. The Neyveli Thermal Power Station (NTPS) unit II in India with three units having prohibited operating zone has been considered as a case study and extensive study has also been performed for power system consisting of 10 generating units. 相似文献