首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stocking of hatchery-raised Chinook salmon has been the principal tool utilized by fishery managers for controlling alewives in Lake Ontario and elsewhere in the Great Lakes. Stocked Chinook salmon are also often viewed by anglers as the principal source of maintaining catch rates. Stocking levels are often controversial and set with limited information about the relative contribution of wild fish to lake-wide populations. Recent research documenting large numbers of age-0 fish in tributaries suggested that wild reproduction was increasing and greater than previously thought. Estimating the contribution of wild Chinook salmon is imperative for successful management of this economically important recreational fishery. To differentiate wild from hatchery-derived Chinook salmon, we developed and validated a classification rule from scale pattern analysis of known-origin fish that was based on the area of the scale focus and the distance between the scale focus and the first circulus. We used this technique to determine the annual proportion of angler-caught, age-3 wild Chinook salmon in Lake Ontario from 1992 to 2005. On average over 14 years, the annual proportion of wild age-3 Chinook salmon was 62% (± 13.6%, 95% CI), but has varied between 24% (± 9.4%) and 82% (± 11.2%). Wild fish have been a high proportion of the Chinook salmon population in Lake Ontario since the late 1980s throughout a period when the lake underwent considerable changes, suggesting that wild and hatchery-origin Chinook salmon are both important components for managing the predator–prey dynamics in Lake Ontario and maintaining angler catch rates.  相似文献   

2.
Thiamine Deficiency Complex (TDC) limits early life stage survival of salmonines. Consuming fatty prey has been hypothesized as a cause of thiamine deficiency; however, this relationship has not been evaluated in the Laurentian Great Lakes where TDC occurs. We found that alewife (Alosa pseudoharengus) have higher lipid content than other common Lake Ontario prey fish. In addition, alewife were predicted as the most consumed prey for brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), lake trout (Salvelinus namaycush), and steelhead trout (O. mykiss); however, the relative importance of alewife in diet composition varied within and among species. Overall, species with greater predicted consumption of alewife had lower egg and muscle thiamine concentrations. Negative correlations between thiamine concentrations and both lipid content and fatty acid concentrations (mg/mg of wet tissue) were limited to brown trout. Similarly, negative correlations between fatty acid proportions (i.e., cumulative proportions of polyunsaturated fatty acids [PUFA] and monounsaturated fatty acids [MUFA]) and thiamine concentrations were only observed for brown and lake trout. Combining data from all species produced curvilinear correlations between thiamine concentrations (egg and muscle) and fatty acid composition (eggs and belly flap). Proportions of PUFAs had negative correlations with thiamine concentrations while proportions of MUFAs had positive correlations. These results provide evidence that, in some cases, salmonine fatty acid composition negatively correlates with thiamine concentrations in Lake Ontario; however, additional research is needed to confirm that this mechanism causes TDC in salmonines, and to understand additional factors potentially associated with TDC.  相似文献   

3.
Lake Michigan salmon and trout populations are important species for recreational fisheries and food web management, and are largely supported through stocking efforts, with varying degrees of natural recruitment. Ongoing fisheries management of these salmonine populations is dictated by relationships between predator and prey abundance as well as community structure within the lake. However, while prey fish biomass has declined, and species composition has changed in recent decades, knowledge of prey consumption by the salmonine community has lagged. Herein, we explore trophic relationships using fatty acids profiles, which offer insights into the foraging habits and energy pathways relied on over weeks to months prior to collection. Fatty acids of the prey base for salmonines in Lake Michigan indicate a gradient of foraging habits that range from pelagic (typified by alewife and rainbow smelt) versus benthic (i.e., slimy sculpin and round goby) resource use. Fatty acids implied that there was more variation in foraging habits among individual lake trout and brown trout compared to Chinook salmon, coho salmon and rainbow trout, which appeared to all rely almost exclusively on pelagic prey. Fatty acid profiles also indicated size-based shifts in foraging habits; for example, larger lake trout consuming a greater proportion of benthic prey than smaller individuals. Data herein suggest that Chinook and coho salmon, as well as rainbow trout, are more likely to experience competitive interactions during times of low pelagic prey-fish abundance in Lake Michigan, whereas brown and lake trout are able to utilize benthic resources to a greater degree.  相似文献   

4.
The habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) was examined in three tributaries of Lake Ontario. A total of 1781 habitat observations were made on Chinook salmon (698) and coho salmon (1083). During both spring and fall, subyearling coho salmon used pool habitat with abundant cover. During spring, principal component analysis revealed that water depth was the most important variable governing subyearling Chinook salmon habitat use. Substrate materials used by Chinook salmon in the spring and coho salmon in the fall were significantly smaller than were present on average within the study reaches. When the two species occurred sympatrically during spring they exhibited similar habitat selection. Although the habitat used by coho salmon in Lake Ontario tributaries was consistent with observations of habitat use in their native range, higher water velocities were less important to Chinook salmon than has previously been reported.  相似文献   

5.
Fish are an excellent source of lean protein and omega-3 polyunsaturated fatty acids (PUFAs) but there is inadequate information on the levels of PUFAs in freshwater fish and specifically Great Lakes fish. Knowledge of PUFAs is necessary to make informed decisions regarding the balance between the benefits of fish consumption due to these factors versus risks of adverse health effects associated with elevated levels of contaminants known to be present in some Great Lakes fish and linked to increased risk of cancer and adverse neurological effects to both infants and adults. Our goal was to determine the lipid profiles in two species of Great Lakes fish, lake trout and whitefish. Total fat and the percentage of total and omega-3 PUFAs were with one exception significantly higher in lake trout than whitefish. Average concentrations of EPA + DHA were 11.2 and 9.7 g/100 g lipid in lake trout and whitefish, respectively. The concentrations of EPA + DHA in fatty marine fish (22.7, 23.9 and 30.2 g/100 g lipid, respectively) are about double those found in Great Lakes lake trout and whitefish. Nevertheless a 100 g serving of Great Lakes lake trout provides more than 500 mg of EPA + DHA, which is the daily intake level recommended by the American Dietetics Association for the prevention of coronary heart disease.  相似文献   

6.
Alewives (Alosa pseudoharengus), the major prey fish for Lake Ontario, contain thiaminase. They are associated with development of a thiamine deficiency in salmonines which greatly increases the potential for developing an early mortality syndrome (EMS). To assess the possible effects of thiamine deficiency on salmonine reproduction we measured egg thiamine concentrations for five species of Lake Ontario salmonines. From this we estimated the proportion of families susceptible to EMS based on whether they were below the ED20, the egg thiamine concentration associated with 20% mortality due to EMS. The ED20s were 1.52, 2.63, and 2.99 nmol/g egg for Chinook salmon (Oncorhynchus tshawytscha), lake trout (Salvelinus namaycush), and coho salmon (Oncorhynchus kisutch), respectively. Based on the proportion of fish having egg thiamine concentrations falling below the ED20, the risk of developing EMS in Lake Ontario was highest for lake trout, followed by coho (O. kisutch), and Chinook salmon, with the least risk for rainbow trout (O. mykiss). For lake trout from western Lake Ontario, mean egg thiamine concentration showed significant annual variability during 1994 to 2003, when the proportion of lake trout at risk of developing EMS based on ED20 ranged between 77 and 100%. Variation in the annual mean egg thiamine concentration for western Lake Ontario lake trout was positively related (p < 0.001, r2 = 0.94) with indices of annual adult alewife biomass. While suggesting the possible involvement of density-dependent changes in alewives, the changes are small relative to egg thiamine concentrations when alewife are not part of the diet and are of insufficient magnitude to allow for natural reproduction by lake trout.  相似文献   

7.
We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5–100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900 pmol g− 1·min− 1 and activities in quagga mussels ranged from 19,500 to 223,800 pmol g− 1·min− 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.  相似文献   

8.
Straying of salmonids in Lake Erie is not well understood despite the economic importance of these recreational fisheries, which are sustained by stocking approximately 2 million steelhead trout (Oncorhynchus mykiss) yearlings annually. The occurrence of straying in hatchery-reared salmonid populations can be influenced by stocking strategies, such as within-stream stocking location. Conneaut Creek provides a unique opportunity to evaluate the extent of release-site fidelity of adult steelhead trout from Lake Erie, because it is equally stocked by Ohio and Pennsylvania at different distances from the stream mouth. Adult steelhead trout were collected from two Conneaut Creek sites, Conneaut Ohio (2 km from Lake Erie) and Albion Pennsylvania (61 km from Lake Erie), in spring and fall of 2009. Elemental signatures of yearling otoliths measured by laser-ablation-inductively-coupled-plasma-mass-spectrometry were used to identify hatchery stocks. The state-specific hatchery stocks were identified with high confidence using discriminant analysis (Sr and Ba concentrations in nine otolith regions; Ohio 100.0%, Michigan 86.1%, New York 92.4%, and Pennsylvania 93.2% using jackknifed mean correct assignment). Adult steelhead trout (N = 174) collected in spring and fall at Conneaut Ohio included both Ohio and Pennsylvania-stocked fish, but no Ohio-stocked steelhead trout were collected at the Pennsylvania site in either season. Of the classified adult steelhead trout, 13.8% were identified as strays from other states (New York and Michigan). These results confirm strong release-site fidelity between Ohio and Pennsylvania stocked steelhead trout and provides fishery managers with sound scientific data to refine their stocking practices.  相似文献   

9.
Monitoring health indicators of fish populations can be an expensive and time consuming process. This study analyzed energy dynamics of Lake Michigan Chinook salmon using proximate composition analysis with the goal of determining an efficient method for monitoring the nutritional status of the population. Condition factor performed poorly as an indicator of whole-fish lipids (r2 = 0.07). Water content in a dorsal muscle plug was found to be correlated with whole-fish lipids (r2 = 0.50) for all samples. For the subset of samples that included small fish collected in the spring, the strength of the relationship between water content in a dorsal muscle plug and whole-fish lipids increased (r2 = 0.70). The metric of water content in a dorsal muscle plug was determined to provide an adequate surrogate of whole-fish lipid content and, therefore, overall nutritional status. We propose a monitoring program that involves collecting small individuals in the spring and reporting the proportion of samples with over 78% water content in muscle tissue. Small individuals collected in the spring had the lowest whole-fish lipid levels of any segment of the population and would be the most prone to nutritional stress; therefore we recommend focusing on them for monitoring.  相似文献   

10.
In 2011, the Michigan Department of Natural Resources (MDNR) expanded stocking of Atlantic salmon (Salmo salar) in Lake Huron to enhance fishing opportunities following Chinook salmon (Oncorhynchus tshawytscha) abundance declines. Currently, little is known about the population produced from this stocking. We fit an assessment model to harvest data from Michigan jurisdictional waters to estimate Atlantic salmon population dynamics and abundance. Because of potential biases in MDNR creel survey harvest estimates, a survey was e-mailed to online purchasers of a 2019 Michigan fishing license asking about where and when Atlantic salmon were harvested to correct creel harvest estimates. Anglers were also asked about catch-and-release angling and tested on their ability to identify Lake Huron salmonids. Creel harvest estimates overlapped spatially and temporally with 42% of survey reported Atlantic salmon harvest. After correcting creel harvest estimates, total abundance of Atlantic salmon in 2019 was estimated at approximately 392,000 fish with a peak abundance of approximately 406,000 fish. Anglers released 27% of caught fish and correctly identified Atlantic salmon 28% of the time. To assess the occurrence of food resource competition, differences in condition (i.e., expected weight at length) were evaluated. Condition was higher in later years than in earlier years despite abundance increases. Our results suggested that past stocking established a population of approximately 400,000 Atlantic salmon with evidence suggesting that fish were finding sufficient food resources. Future Atlantic salmon management efforts may be improved by quantifying post-stocking survival rates and other sources (e.g., charter, Canadian) of harvest.  相似文献   

11.
Thiamine (vitamin B1) deficiency in Great Lakes salmonines has been linked to consumption of alewife Alosa pseudoharengus. Thiamine deficiency has been recognized as a possible impediment to lake trout Salvelinus namaycush recruitment in the Great Lakes and Atlantic salmon Salmo salar recruitment in the Finger Lakes and Baltic Sea. Alewife invaded Lake Champlain in 2003 which provided an opportunity to investigate changes in thiamine concentrations in salmonine predators during an alewife invasion. We monitored egg unphosphorylated and total thiamine concentrations in lake trout and Atlantic salmon in 2004 and 2007–2019, assessed whether concentrations were associated with mortality, and examined thiaminase activity in alewife. Total thiamine concentrations in lake trout and Atlantic salmon were significantly lower than in 2004 for seven of the ten collection years for lake trout and for nine of the 12 collection years for Atlantic salmon. Mortality and signs of thiamine deficiency were observed in laboratory-reared Atlantic salmon free embryos but not in lake trout. Average thiaminase activity in adult alewife declined from 5200 pmol/g/min in 2006 to 1500 pmol/g/min in 2012. Our results provide further evidence that a diet that includes alewife reduces egg thiamine concentrations in salmonines. This effect was observed within four years of the invasion of alewife.  相似文献   

12.
In Lake Michigan, the unintended introduction of invasive species (e.g., zebra mussel, Dreissena polymorpha; quagga mussel, D. rostriformis bugensis; round goby, Neogobius melanostomus) and reduced nutrient loading has altered nutrient dynamics, system productivity, and community composition over the past two decades. These factors, together with sustained predation pressure, have contributed to declines of several forage fish species, including alewife (Alosa pseudoharengus), which has dominated diets of the five primary salmonine species of Lake Michigan for the last 50 years. Salmonines that have inflexible, less complex diets may struggle if alewife declines continue. We analyzed stomach contents of salmonines collected throughout the main basin of Lake Michigan in 2015 and 2016 to investigate diet composition, diet diversity, and individual variation of alewife lengths consumed. Chinook salmon (Oncorhynchus tshawytscha) almost exclusively consumed alewife and had lower diet diversities compared to the other four species, which consumed relatively high frequencies of round goby (brown trout, Salmo trutta; lake trout, Salvelinus namaycush), aquatic invertebrates (coho salmon, Oncorhynchus kisutch) and terrestrial invertebrates (rainbow trout, Oncorhynchus mykiss) along with alewife. Although clear spatio-temporal feeding patterns existed, much of the variation in diet composition and diet diversity was expressed at the individual level. Salmonine populations consumed the entire size range of alewife that were available, whereas individual stomachs tended to contain a narrow range of alewife sizes. Due to their reliance on alewife, it is likely that Chinook salmon will be more negatively impacted than other salmonine species if alewife abundance continues to decline in Lake Michigan.  相似文献   

13.
Diel feeding periodicity, daily ration, and diet composition of wild and hatchery subyearling Chinook salmon Oncorhynchus tshawytscha were examined in Lake Ontario and the Salmon River, New York. The diet of wild riverine salmon was composed mainly of aquatic invertebrates (63.4%), mostly ephemeropterans (25.8%), chiromomids (15.8%), and trichopterans (8.3%). The diet of riverine Chinook was more closely associated with the composition of drift samples rather than bottom samples, suggesting mid-water feeding. In Lake Ontario terrestrial invertebrates were more important in the diet of hatchery Chinook (49.0%) than wild salmon (30.5%) and diet overlap between hatchery and wild salmon was low (0.46%). The diet of both hatchery and wild Chinook salmon was more closely associated with the composition of mid-water invertebrate samples rather than benthic core samples, indicating mid-water and surface feeding. Hatchery Chinook salmon consumed significantly less food (P < 0.05) than wild Chinook salmon in the lake and in the river, and wild salmon from Lake Ontario consumed more food than wild salmon in the Salmon River. Peak feeding of wild Chinook salmon occurred between 1200–1600 hours in Lake Ontario and between 1600–2000 hours in the Salmon River; there was no discernable feeding peak for the hatchery Chinook in Lake Ontario. Hatchery Chinook salmon also had the least diverse diet over the 24-hour sample period. These results suggest that at 7 days post-stocking hatchery Chinook salmon had not yet fully adapted to their new environment.  相似文献   

14.
Fillets of fall run coho salmon from each of the Great Lakes were analyzed for pesticides and industrial compounds. PCBs were the dominant contaminant in all samples ranging from trace concentrations in Lake Superior to 1.74 μg/kg in Lake Ontario. Compounds which have been banned or restricted were detected in most samples. These include PCB, DDT, chlordane, dieldrin, toxaphene, endrin, lindane, and heptachlor-epoxide. The herbicide, dacthal, was detected in samples from Lakes Michigan, Huron, and Erie. Comparison of 1984 coho salmon with those collected in 1980 through 1983 indicates that concentrations of PCB and DDT in coho from Lakes Erie and Michigan have declined, following first order loss kinetics. Dieldrin concentrations in Lake Michigan coho have also declined following first order loss kinetics.  相似文献   

15.
Thiamine Deficiency Complex (TDC) is an ongoing problem impacting salmonine health in various waterbodies, including Lake Ontario. The prevalence of TDC has been variable and explanations for differences are limited. In the current study, thiamine concentrations were measured in eggs, liver tissue, and muscle tissue sampled from brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), lake trout (Salvelinus namaycush), and steelhead trout (O. mykiss) that were collected from Lake Ontario and its surrounding tributaries. The occurrence of TDC was measured for each species based on TDC-induced offspring mortality rates under laboratory conditions. TDC-induced offspring mortality was observed for all species except brown trout. For affected species, egg free thiamine (Th) was consistently low compared to lake trout collected from Lake Superior that are considered thiamine replete. In addition, species with the lowest percentages of Th in their eggs were the most susceptible to TDC, suggesting that limited thiamine reserves in the form of Th may cause TDC-induced offspring mortality. Lastly, our results show that egg thiamine concentrations have yearly variation and increased for all species throughout the study. Reasons for such variation are undetermined; but, if egg thiamine concentrations continue to increase, the impacts of TDC on these salmonine species may lessen. Future monitoring is needed for determining if thiamine concentrations are increasing and the potential impacts that may have on the entire Lake Ontario fishery.  相似文献   

16.
Signs of increasing oligotrophication have been apparent in the open waters of both Lake Huron and Lake Michigan in recent years. Spring total phosphorus (TP) and the relative percentage of particulate phosphorus have declined in both lakes; spring TP concentrations in Lake Huron are now slightly lower than those in Lake Superior, while those in Lake Michigan are higher by only about 1 μg P/L. Furthermore, spring soluble silica concentrations have increased significantly in both lakes, consistent with decreases in productivity. Transparencies in Lakes Huron and Michigan have increased, and in most regions are currently roughly equivalent to those seen in Lake Superior. Seasonality of chlorophyll, as estimated by SeaWiFS satellite imagery, has been dramatically reduced in Lake Huron and Lake Michigan, with the spring bloom largely absent from both lakes and instead a seasonal maximum occurring in autumn, as is the case in Lake Superior. As of 2006, the loss of cladocerans and the increased importance of calanoids, in particular Limnocalanus, have resulted in crustacean zooplankton communities in Lake Huron and Lake Michigan closely resembling that in Lake Superior in size and structure. Decreases in Diporeia in offshore waters have resulted in abundances of non-dreissenid benthos communities in these lakes that approach those of Lake Superior. These changes have resulted in a distinct convergence of the trophic state and lower food web in the three lakes, with Lake Huron more oligotrophic than Lake Superior by some measures.  相似文献   

17.
Thiaminase induced thiamine deficiency occurs in fish, humans, livestock and wild animals. A non-radioactive thiaminase assay was described in 2007, but a direct comparison with the radioactive 14C-thiamine method which has been in use for more than 30 years has not been reported. The objective was to measure thiaminase activity in forage fish (alewife Alosa pseudoharengus, rainbow smelt Osmerus mordax, and slimy sculpin Cottus cognatus) consumed by predators that manifest thiamine deficiency using both methods. Modifications were made to the colorimetric assay to improve repeatability. Modification included a change in assay pH, enhanced sample clean-up, constant assay temperature (37 °C), increase in the concentration of 4-nitrothiophenol (4NTP) and use of a spectrophotometer fitted with a 0.2 cm cell. A strong relationship between the two assays was found for 51 alewife (R2 = 0.85), 36 smelt (R2 = 0.87) and 20 sculpin (R2 = 0.82). Thiaminase activity in the colorimetric assay was about 1000 times higher than activity measured by the radioactive method. Application of the assay to fish species from which no thiaminase activity has previously been reported resulted in no 4NTP thiaminase activity being found in bloater Coregonus hoyi, lake trout Salvelinus namaycusch, steelhead trout Oncorhynchus mykiss or Chinook salmon Oncorhynchus tshawytscha. In species previously reported to contain thiaminase, 4NTP thiaminase activity was measured in bacteria Paenibacillus thiaminolyticus, gizzard shad Dorosoma cepedianum, bracken fern Pteridium aquilinum, quagga mussel Dreissena bugensis and zebra mussels D. polymorpha.  相似文献   

18.
Thiamine deficiency is an impediment to salmonine reproduction in the Great Lakes, but little is known about other measures of dietary quality, such as lipid-soluble vitamins or fatty acids in prey fish. The objective of the present research was to measure selected essential nutrients and thiaminase activity in five Lake Ontario prey fish species (alewife Alosa psuedoharengus, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, threespine stickleback Gasterosteus aculeatus and round goby Neogobius melanostomus). Total thiamine was greater in alewife (13.6 nmol/g) than in the other species (6.2–9.0 nmol/g). In 2006, thiaminase activity was unexpectedly high in goby (12.49 nmol/g/min), sculpin (1.99 nmol/g/min) and smelt (9.24 nmol/g/min). In 2007, thiaminase activity in goby (0.99 nmol/g/min) and smelt (4.94 nmol/g/min) was low compared to 2006, whereas sculpin thiaminase activity was greatest (6.01 nmol/g/min). The causes for this variability are unknown. Thiaminase activity was within the expected range for alewife (4.31–6.31 nmol/g/min) and stickleback (0.06 nmol/g/min). Concentrations of retinoids, carotenoids, vitamin E (tocopherol) and fatty acids also differed among prey fish species. Tocopherol concentrations in goby (12.74 ng/mg), sculpin (25.29 ng/mg), and smelt (22.81 ng/mg) were greater than in alewife (1.59 ng/mg). Goby had the lowest ∑ ω-3 to ∑ ω-6 fatty acid ratio (1.44) when compared to sculpin (2.97) and smelt (2.85). Thiaminase concentrations in alewife and smelt (and possibly goby) suggest that they have the potential to adversely affect natural reproduction in salmonines. Concentrations of carotenoids, retinoids and tocopherol in prey fish appear to be lower than salmonine dietary requirements.  相似文献   

19.
The Chippewa Ottawa Resource Authority (CORA) in Sault Ste. Marie, Michigan, has been monitoring contaminant concentrations in the fillet portions of fish from the 1836 treaty-ceded waters of lakes Superior, Huron, and Michigan since 1991. The goal is to provide up to date consumption advice for their CORA member tribes. For the first time since the program started, CORA has included fatty acid analysis in 2016 monitoring of fish in Lake Superior. Ten species were targeted by CORA based on 25 years of experience and regular discussions with Anishinaabe fish consumers. This paper reports these results and presents some preliminary discussion of the consequences for consumption advice for the CORA member tribes who inhabit the Great Lakes region. Six of the species were sampled from Lake Huron and Lake Superior and four were sampled from supermarkets. Wild caught fish are an important link to the culture of Great Lakes Native American tribes and important sources of food and omega-3 polyunsaturated fatty acids (PUFA N-3). While some PUFA N-3 data from the Great Lakes is available, this dataset provides an important supplement and is specific to the 1836-treaty ceded waters of CORA. This paper confirms the presence of PUFA N-3s in Great Lakes fish traditionally harvested by the CORA tribes.  相似文献   

20.
Mercury cycling in Lake Superior and Lake Michigan was evaluated based on measurements of mercury levels, modeling of evasional fluxes, and development of first-order mass balance models. Total mercury, methylmercury, and dissolved gaseous mercury were measured on sampling cruises in Lake Michigan (2005) and Lake Superior (2006). Average total mercury concentrations in unfiltered surface water were higher in Lake Michigan (420 ± 40 pg/L) compared to Lake Superior (210 ± 20 pg/L). Methylmercury levels were below the detection limit in Lake Michigan. Larger sample volumes were collected to lower detection limits in Lake Superior in 2006 and methylmercury levels averaged 7 ± 6 pg/L. Dissolved gaseous mercury concentrations were also higher in Lake Michigan (27 ± 7 pg/L) compared to Lake Superior (14 ± 8 pg/L). Evasional fluxes were estimated using a two-film model for air–water exchange. The annual evasional flux in Lake Michigan was determined to be ~ 380 kg/yr from Lake Michigan and ~ 160 kg/yr from Lake Superior. Total mercury burdens in each lake were estimated to be ~ 2500 kg in Superior and ~ 2100 kg in Lake Michigan demonstrating that evasional fluxes play an important role in the mass balance of each lake, particularly Lake Michigan. A simple first-order mass balance model demonstrates the importance of air–water exchange and sedimentation as primary removal processes for Hg in each lake. Uncertainties in the mass balance model are highlighted due to lack of key data, particularly in Lake Superior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号