共查询到20条相似文献,搜索用时 0 毫秒
1.
Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling 总被引:4,自引:0,他引:4
This paper reports a full-scale experimental campaign and a computational fluid dynamics (CFD) study of a radiant cooling ceiling installed in a test room, under controlled conditions. This research aims to use the results obtained from the two studies to analyze the indoor thermal comfort using the predicted mean vote (PMV). During the whole experimental tests the indoor humidity was kept at a level where the condensation risk was minimized and no condensation was detected on the chilled surface of the ceiling. Detailed experimental measurements on the air temperature distribution, surface temperature and globe temperature were realized for different cases where the cooling ceiling temperature varied from 16.9 to 18.9 °C. The boundary conditions necessary for the CFD study were obtained from the experimental data measurements. The results of the simulations were first validated with the data from the experiments and then the air velocity fields were investigated. It was found that in the ankle/feet zone the air velocity could pass 0.2 m/s but for the rest of the zones it took values less than 0.1 m/s. The obtained experimental results for different chilled ceiling temperatures showed that with a cooling ceiling the vertical temperature gradient is less than 1 °C/m, which corresponds to the standard recommendations. A comparison between globe temperature and the indoor air temperature showed a maximum difference of 0.8 °C being noticed. This paper also presents the radiosity method that was used to calculate the mean radiant temperature for different positions along different axes. The method was based on the calculation of the view factors and on the surface temperatures obtained from the experiments. PMV plots showed that the thermal comfort is achieved and is uniformly distributed within the test room. 相似文献
2.
Performance of heat emitters in a room is affected by their interaction with the ventilation system. A radiator gives more heat output with increased air flow along its heat transferring surface, and with increased thermal difference to surrounding air. Radiator heat output and comfort temperatures in a small one-person office were studied using different positions for the ventilation air inlet. In two of the four test cases the air inlet was placed between radiator panels to form ventilation-radiator systems. Investigations were made by CFD (Computational Fluid Dynamics) simulations, and included visualisation of thermal comfort conditions, as well as radiator heat output comparisons. The room model was exhaust-ventilated, with an air exchange rate equal to what is recommended for Swedish offices (7 l s−1 per person) and cold infiltration air (−5 °C) typical of a winter day in Stockholm.Results showed that under these conditions ventilation-radiators were able to create a more stable thermal climate than the traditional radiator ventilation arrangements. In addition, when using ventilation-radiators the desired thermal climate could be achieved with a radiator surface temperature as much as 7.8 °C lower. It was concluded that in exhaust-ventilated office rooms, ventilation-radiators can provide energy and environmental savings. 相似文献
3.
Natural cross-ventilation in buildings: Building-scale experiments,numerical simulation and thermal comfort evaluation 总被引:1,自引:0,他引:1
G.M. Stavrakakis M.K. Koukou M.Gr. Vrachopoulos N.C. Markatos 《Energy and Buildings》2008,40(9):1666-1681
The constantly increasing energy consumption due to the use of mechanical ventilation contributes to atmospheric pollution and global warming. An alternative method to overcome this problem is natural ventilation. The proper design of natural ventilation must be based on detailed understanding of airflow within enclosed spaces, governed by pressure differences due to wind and buoyancy forces. In the present study, natural cross-ventilation with openings at non-symmetrical locations is examined experimentally in a test chamber and numerically using advanced computational fluid dynamics techniques. The experimental part consisted of temperature and velocity measurements at strategically selected locations in the chamber, during noon and afternoon hours of typical summer days. External weather conditions were recorded by a weather station at the chamber's site. The computational part of the study consisted of the steady-state application of three Reynolds-Averaged Navier-Stokes (RANS) models modified to account for both wind and buoyancy effects: the standard k–?, the RNG k–? and the so-called “realizable” k–? models. Two computational domains were used, corresponding to each recorded wind incidence angle. It is concluded that all turbulence models applied agree relatively well with the experimental measurements. The indoor thermal environment was also studied using two thermal comfort models found in literature for the estimation of thermal comfort under high-temperature experimental conditions. 相似文献
4.
In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation. 相似文献
5.
A two-storey rammed earth building was built on the Thurgoona Campus of Charles Sturt University in Albury-Wodonga, Australia, in 1999. The building is novel both in the use of materials and equipment for heating and cooling. The climate at Wodonga can be characterised as hot and dry, so the challenge of providing comfortable working conditions with minimal energy consumption is considerable. This paper describes an evaluation of the building in terms of measured thermal comfort and energy use. Measurements, confirmed by a staff questionnaire, found the building was too hot in summer and too cold in winter. Comparison with another office building in the same location found that the rammed earth building used more energy for heating. The thermal performance of three offices in the rammed earth building was investigated further using simulation to predict office temperatures. Comparisons were made with measurements made over typical weeks in summer and winter. The validated model has been used to investigate key building parameters and strategies to improve the thermal comfort and reduce energy consumption in the building. Simulations showed that improvements could be made by design and control strategy changes. 相似文献
6.
The present work is focused on the study of indoor thermal comfort control problem in buildings equipped with HVAC (heating, ventilation and air conditioning) systems. The occupants’ thermal comfort sensation is addressed here by the well-known comfort index known as PMV (predicted mean vote) and by a comfort zone defined in a psychrometric chart. In this context, different strategies for the control algorithms are proposed by using an only-one-actuator system that can be associated to a cooling and/or heating system. The first set of strategies is related to the thermal comfort optimization and the second one includes energy consumption minimization, while maintaining the indoor thermal comfort criterion at an adequate level. The methods are based on the model predictive control scheme and simulation results are presented for two case studies. The results validate the proposed methodology in terms of both thermal comfort and energy savings. 相似文献
7.
With the actual environmental issues of energy savings in buildings, there are more efforts to prevent any increase in energy use associated with installing air-conditioning systems. The actual standard of thermal comfort in buildings ISO 7730 is based on static model that is acceptable in air-conditioned buildings, but unreliable for the case of naturally ventilated buildings. The different field studies have shown that occupants of naturally ventilated buildings accept and prefer a significantly wider range of temperatures compared to occupants of air-conditioned buildings. The results of these field studies have contributed to develop the adaptive approach. Adaptive comfort algorithms have been integrated in EN15251 and ASHRAE standards to take into account the adaptive approach in naturally ventilated buildings. These adaptive algorithms seem to be more efficient for naturally ventilated buildings, but need to be assessed in field studies. This paper evaluates different algorithms from both static and adaptive approach in naturally ventilated buildings across a field survey that has been conducted in France in five naturally ventilated office buildings. The paper presents the methodology guidelines, and the thermal comfort algorithms considered. The results of application of different algorithms are provided with a comparative analysis to assess the applied algorithms. 相似文献
8.
The relationships between overall thermal sensation, acceptability and comfort were studied experimentally under uniform and non-uniform conditions separately. Thirty subjects participated in the experiment and reported their local thermal sensation of each body part, overall thermal sensation, acceptability and comfort simultaneously. Sensation, acceptability and comfort were found to be correlated closely under uniform conditions and acceptable range ran from neutral to 1.5 (midpoint between ‘Slightly Warm’ and ‘Warm’) on thermal sensation scale and contained all comfortable and slightly uncomfortable votes on thermal comfort scale. Under non-uniform conditions overall thermal acceptability and comfort were correlated closely. However, overall thermal sensation was apart from the other two responses and non-uniformity of thermal sensation was found to be the reason for the breakage. Combining the effects of overall thermal sensation and non-uniformity of thermal sensation, a new thermal acceptability model was proposed and the model was testified to be applicable to uniform and non-uniform conditions over a wide range of whole body thermal state from neutral to warm. 相似文献
9.
The distinctions between natural ventilation and mechanical ventilation system are explained. With the testing result of natural ventilation system of an office building in Shanghai, the irrationality of using energy-utilization coefficient to evaluate one natural ventilation system is discussed. Based on thermal comfort of natural ventilation environment, an evaluation method is then established and used to evaluate the testing result. 相似文献
10.
浅谈地板采暖及舒适性节能 总被引:1,自引:0,他引:1
介绍了地板采暖的几大优势,并从设计和应用两方面分析了地暖存在的问题,指出地暖将以其既舒适又节能的优势成为未来的建筑采暖趋势,值得广泛推广使用。 相似文献
11.
Assessing thermal comfort of active people in transitional spaces in presence of air movement 总被引:1,自引:0,他引:1
The aim of this study is to develop a modeling methodology to assess thermal comfort and sensation of active people in transitional spaces and consider how comfort can be achieved by air movement while changing upper body clothing properties. The modeling is based on a bioheat model, capable of predicting segmental skin and core temperature from locally ventilated clothed body parts. The bioheat model is integrated with thermal comfort and sensation models to predict comfort in presence of air movement.The model accuracy in predicting comfort was validated by and agreed with the results of a survey administered to subjects wearing typical clothing at different activity levels to record their overall and local thermal sensation and comfort in a transitional space at Beirut summer climate. The transitional space temperature monitored during the experiments ranged between 27 °C and 30 °C.A parametric study is performed to assess thermal comfort in transitional spaces for different air movement levels and for three clothing designs. The high permeable clothing at 1.5 m/s and indoor temperature of 30 °C improved the Predicted Mean Vote to values less than 0.5 compared to 1.01 attained with typical low permeable clothing. 相似文献
12.
This paper addresses the dual challenge of designing sustainable low-energy buildings while still providing thermal comfort under warmer summer conditions produced by anthropogenic climate change—a key challenge for building designers in the 21st century. The main focus is towards buildings that are ‘free running’ for some part of the summer, either being entirely naturally ventilated or mixed-mode (where mechanical cooling is only used when thought to be essential). Because the conditions in these buildings will vary from day to day it is important to understand how people react and adapt to their environment. A summary is made of recent developments in this area and of the climate data required to assess building performance. Temperatures in free running buildings are necessarily closely linked to those outside. Because the climate is changing and outside summer temperatures are expected to increase, the future will offer greater challenges to the designers of sustainable buildings aiming to provide either entirely passive or low-energy comfort cooling. These issues are demonstrated by predictions of the performance of some case study buildings under a climate change scenario. The examples also demonstrate some of the important principles associated with climate-sensitive low-energy design. 相似文献
13.
An active facade is often used to promote the flow of air through a building, however in order to ensure that this process is effective the facade should face a southerly orientation. This means that not only solar energy is transferred across the glazing but in sunny periods shading is needed to prevent excess brightness levels occurring on the working areas where it may result in the luminance distributions not complying with current lighting requirements. The building investigated is located in Sheffield, England and is one of the University of Sheffield's recently built green buildings. It has a high thermal mass which is used to promote the use of night cooling. This paper reports the initial findings of an internal assessment of the thermal comfort and daylighting conditions in such a building. The results have indicated that such designs are to be commended for their passive use of solar energy and can provide a high quality working environment. 相似文献
14.
Daechung, a semi-open space with wooden floor located between the front and backyards of traditional Korean residences, is well known as a cool space in summer due to cross-ventilation, but it has not yet been scientifically explained thoroughly. The purpose of this paper is to characterize the wind flow measured at a Daechung to interpret the effects of the wind characteristics on thermal comfort. We measured 10-Hz turbulence data at the Daechung and partitioned the wind vector into two directions (i.e. backyard to Daechung and front yard to Daechung). Interestingly, the wind from the cool backyard flowing through the Daechung was of less frequency and shorter duration but had higher velocity compared to wind from the opposite direction, which can provide thermal comfort to the dwellers. We suggest that the wind characteristics were determined by various aspects of the house's design, such as its location and the degree of enclosure in front and backyards. The results show that traditional Korean house made use of a natural ventilation system during the summer. The principles of this system could be helpful in constructing environmentally friendly and sustainable residences. 相似文献
15.
This paper presents the results of a three dimensional study for evaluating the temperature profiles and air flow movement in a model room with a numerical model based on the Euler equations. Numerical results obtained for two scenarios of ventilation and air conditioning are compared with the predictions of a Navier-Stokes model. These numerical results are validated by experimental results measured in the model room. A comparison of the local thermal comfort indices PMV and PPD obtained experimentally and numerically is also presented. Results show that the Euler model is able to predict adequately total thermal comfort in the model room. Furthermore, the use of Euler equations allows a reduction of computational time in the order of 50% compared to the Navier-Stokes modeling. 相似文献
16.
17.
The paper deals with an optimization of parameters, which influence the energy and investment cost as well as the thermal comfort. The parameters considered in this study are: the insulation thickness of the building envelope, the supply-water temperature and the heat exchange area of the radiators. A combination of the building energy simulation software EnergyPlus 1 and the generic optimization program GenOpt (see footnote 1) has been used for this purpose. The paper presents the application of a one-objective optimization algorithm solving the problems with two objectives, because the optimization algorithm is one-objective and the problem has two objectives, which are minimal total costs and satisfied thermal comfort. The total costs represent the sum of energy consumption and the investment costs. The thermal comfort is represented by Predicted Percentage of Dissatisfied (PPD) in this study. The optimization is used to determine the values of parameters that give the lowest sum of investment and energy cost, under the condition that the thermal comfort is satisfied. In addition, the optimization processes show the mutual influence of parameters on both the total cost and the thermal comfort. 相似文献
18.
Thermal sensation is studied experimentally under mixing ventilation, displacement ventilation, and stratum ventilation in an environmental chamber. Forty-eight subjects participated in all tests under the same boundary conditions but different ventilation methods in the classroom. Thermal comfort analysis was carried out according to the designated supply airflow rate, room temperature, and relative humidity for the three ventilation methods. The thermal neutral temperature under stratum ventilation is approximately 2.5 °C higher than that under mixing ventilation and 2.0 °C higher than that under displacement ventilation. This result indicates that stratum ventilation could provide satisfactory thermal comfort level to rooms of temperature up to 27 °C. The energy saving attributable to less ventilation load alone is around 12% compared with mixing ventilation and 9% compared with displacement ventilation. PRACTICAL IMPLICATIONS: The confirmation of the significantly elevated thermal neutral temperature can have a number of implications for both thermal comfort in an air-conditioned room and energy consumption of the associate air-conditioning system. With respect to the former, it provides scientific basis for the feasibility of elevated room temperatures, and with respect to the latter, it reveals considerable potentials for energy saving. 相似文献
19.
This paper presents a study of local thermal sensation (LTS) and comfort in a field environmental chamber (FEC) served by displacement ventilation (DV) system. The FEC, 11.12 m (L)×7.53 m (W)×2.60 m (H), simulates a typical office layout. A total of 60 tropically acclimatized subjects, 30 male and 30 female, were engaged in sedentary office work for 3 h. Subjects were exposed to three vertical air temperature gradients, nominally 1, 3 and 5 K/m, between 0.1 and 1.1 m heights and three room air temperatures of 20, 23 and 26 °C at 0.6 m height. The objective of this study is to investigate the mutual effect of local and overall thermal sensation (OTS) and comfort in DV environment. The results show that in a space served by DV system, at OTS close to neutral, local thermal discomfort decreased with the increase of room air temperature. The OTS of occupants was mainly affected by LTS at the arm, calf, foot, back and hand. Local thermal discomfort was affected by both LTS and OTS. At overall cold thermal sensation, all body segments prefer slightly warm sensation. At overall slightly warm thermal sensation, all body segments prefer slightly cool sensation. 相似文献
20.
In hot humid climates, natural ventilation is an essential passive strategy in order to maintain thermal comfort inside buildings and it can be also used as an energy-conserving design strategy to reduce building cooling loads by removing heat stored in the buildings thermal mass. In this context, many previous studies have focused on thermal comfort and air velocity ranges. However, whether this air movement is desirable or not remains an open area. This paper aims to identify air movement acceptability levels inside naturally ventilated buildings in Brazil. Minimal air velocity values corresponding to 80% and 90% (V80 and V90) air movement acceptability inside these buildings. Field experiments were performed during hot and cool seasons when 2075 questionnaires were filled for the subjects while simultaneous microclimatic observations were made with laboratory precision. Main results indicated that the minimal air velocity required were at least 0.4 m/s for 26 °C reaching 0.9 m/s for operative temperatures up to 30 °C. Subjects are not only preferring more air speed but also demanding air velocities closer or higher than 0.8 m/s ASHRAE limit. This dispels the notion of draft in hot humid climates and reinforce the broader theory of alliesthesia and the physiological role of pleasure due to air movement increment. 相似文献