首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heatable microfluidic chip developed herein successfully integrates a microheater and flow-focusing device to generate uniform-sized gelatin emulsions under various flow rate ratios (sample phase/oil phase, Q s/Q o) and driven voltages. The gelatin emulsions can be applied to encapsulate vitamin C for drug release. Our goal is to create the thermal conditions for thermo-sensitive hydrogel materials in the microfluidic chip and generate continuous and uniform emulsions under any external environment. The gelatin emulsion sizes have a coefficient of variation of <5 % and can be precisely controlled by altering the flow rate ratio (Q s/Q o) and driven voltage. The gelatin emulsion diameters range from 45 to 120 μm. Moreover, various sizes of these gelatin microcapsules containing vitamin C were used for drug release. The developed microfluidic chip has the advantages of a heatable platform in the fluid device, active control over the emulsion diameter, the generation of uniform-sized emulsions, and simplicity. This new approach for gelatin microcapsules will provide many potential applications in drug delivery and pharmaceuticals.  相似文献   

2.
A single microfluidic chip consisting of six microfluidic flow-focusing devices operating in parallel was developed to investigate the feasibility of scaling microfluidic droplet generation up to production rates of hundreds of milliliters per hour. The design utilizes a single inlet channel for both the dispersed aqueous phase and the continuous oil phase from which the fluids were distributed to all six flow-focusing devices. The exit tubing for each of the six flow-focusing devices is separate and individually plumbed to each device. Within each flow-focusing device, the droplet size was monodisperse, but some droplet size variations were observed across devices. We show that by modifying the flow resistance in the outlet channel of an individual flow-focusing device it is possible to control both the droplet size and frequency of droplet production. This can be achieved through the use of valves or, as is done in this study, by changing the length of the exit tubing plumbed to the outlet of the each device. Longer exit tubing and larger flow resistance is found to lead to larger droplets and higher production frequencies. The devices can thus be individually tuned to create a monodisperse emulsion or an emulsion with a specific drop size distribution.  相似文献   

3.
In this paper, we report a microfluidic chip containing a cross-junction channel for the manipulation of UV-photopolymerized microparticles. Hydrodynamic-focusing is used to form a series of using 365 nm UV light to solidify the hydrogel droplets. We were able to control the size of the hydrogel droplets from 75 to 300 μm in diameter by altering the sample and by changing the flow rate ratio of the mineral oil in the center inlet channel to that of the side inlet channels. We found that the size of the emulsions increases with an increase in average velocity of the dispersed phase flow (polymer solution flow). The size of the emulsions decreases with an average velocity increase of the continuous phase flow (mineral oil flow). Experimental data show that the emulsions are very uniform. The developed microfluidic chip has the advantages of ease of fabrication, low cost, and high throughput. The emulsions generated are very uniform and have good regularity.  相似文献   

4.
This study successfully uses the micro-mixers and flow-focusing devices, which are integrated into a gradient-microfluidic droplet generator, to generate the different sizes of the droplets with different concentrations simultaneously and applies these microcapsules for drug release. The sizes of these four types of droplet with different concentrations are uniformity with a coefficient of variation less than 5% and can be precisely controlled by adjusting the water phase flow rate and oil phase flow rate. Moreover, Ca-alginate microcapsules with different concentrations of the bovine serum albumin are used for uniform size drug release, and the Ca-alginate microcapsule size is from 60 to 105 μm in diameter. This developed microfluidic chip has the advantages of actively controlling the droplet diameter, simultaneously generating uniform-sized droplets with different concentrations, and having a simple process and a high throughput. This preparation approach for Ca-alginate microcapsules of four different concentrations will provide many potential applications for drug delivery and pharmaceutical area.  相似文献   

5.
Monodispersed emulsions are of great significance for a variety of applications. The current study reports a new microfluidic system capable of formation of microdroplets in liquids for emulsification applications. This new emulsion chip can precisely generate uniform droplets using a novel combination of hydrodynamic-focusing and liquid-chopping techniques. Experimental data show that microdroplets with diameters ranging from 6 to 100 mum with a variation less than 3% can be precisely generated. The size of the droplets is tunable using three approaches including adjusting the relative sheath/sample flow velocity ratios, the applied air pressure and the applied chopping frequency. Moreover, focusing and chopping of multiple flows has been demonstrated to increase the emulsion process throughput  相似文献   

6.
Microcapsules templated from microfluidic double emulsions attract a great attention due to their broad new potential applications. We present a method to form transparent polymer microcapsules in small sizes of ~30 μm with aqueous cores and fully closed shells. We controlled the size ratio of the aqueous core to the polymer shell not only by flow rates of the double emulsions, but also by synergetic interaction between surfactants at the interface of immiscible fluids. We also found that fully closed shells can be formed by generating the double emulsion droplets in a jetting regime, in which the aqueous cores are confined centrally in the double emulsion droplets. We demonstrated the formation of barcodes in these microcapsules for multiplexed bioassays. These transparent microcapsules also have wide and high potentials for the development of various microsensors by functionalizing the liquid-state cores with compounds sensitive and responsive to temperature, light or electromagnetic field.  相似文献   

7.
The capacity of microfluidic technology to fabricate monodisperse emulsion droplets is well established. Parallelisation of droplet production is a prerequisite for using such an approach for making high-quality materials for either fundamental or industrial applications where product quantity matters. Here, we investigate the emulsification efficiency of parallelised drop generators based on a flow-focusing geometry when incorporating the role of partial wetting in order to make emulsion droplets with a diameter below 10 μm. Confinement intrinsically encountered in microsystems intensifies the role played by interfaces between liquids and solids. We thus take advantage of partial wetting to enhance the maximum confinement accessible due to liquid flow focusing. We compare the performances brought by partial wetting to more established routes such as step emulsification. We show that the step configuration and the partial wetting regime are both well suited for being parallelised and thus open the way to the production of fine and calibrated emulsions for further applications. Finally, this new route of emulsification that exploits partial wetting between the fluids and the channel walls opens possibilities to the formation of substantially smaller droplets, as required in many fields of application.  相似文献   

8.
A new method for actively controlling the number of internal droplets of water-in-oil-in-water (W/O/W) double-emulsion droplets was demonstrated. A new microfluidic platform for double-emulsion applications has been developed, which integrates T-junction channels, moving-wall structures, and a flow-focusing structure. Inner water-in-oil (W/O) single-emulsion droplets were first formed at a major T-junction. Then the droplets were sub-divided into smaller uniform droplets by passing through a series of secondary T-junctions (branches). The moving-wall structures beside the secondary T-junctions were used to control the number of the sub-divided droplets by selectively blocking the branches. Finally, double-emulsion droplets were formed by using a flow-focusing structure downstream. Experimental data demonstrate that the inner and outer droplets have narrow size distributions with coefficient of variation (CV) of less than 3.5% and 5.7%, respectively. Double-emulsion droplets with 1, 2, 3, and up to 10 inner droplets have been successfully formed using this approach. The size of the inner droplets and outer droplets could be also fine-tuned with this device. The development of this new platform was promising for drug delivery applications involving double emulsions.  相似文献   

9.
Formation of emulsion droplets is crucial for a variety of industrial and scientific applications. This study presents a new droplet-based microfluidic system capable of generating tunable and uniform-sized droplets and subsequently deflecting these droplets at various inclination angles using a combination of flow-focusing and moving-wall structures. A pneumatic air chamber was used to activate the moving-wall structures, located nearby the outlet of the flow-focusing microchannels, such that the sheath flows can be locally accelerated. With this approach, the size of the droplets can be fine-tuned and sorted without adjusting the syringe pumps. Experimental data showed that droplets with diameters ranging from 31.4 to 146.2 μm with a variation of less than 5.39% can be generated. Besides, droplets can be sorted upwards or backwards with an inclination angle ranging from 0° to 53.5°. The development of this emulsion system may be promising for the formation and collection of emulsion products for applications in the pharmaceutical, cosmetics and food industries.  相似文献   

10.
Modification of the surfaces of polycarbonate (PC) with the use of a solution of tin (II) chloride renders them hydrophilic. The surface draping is stable against exposure to water and to alcohols. Exposure to alkanes reduces but does not diminish the effect. The method is compatible—in using the same solvent and temperature—with the hydrophobic modification of PC (Jankowski et al. in Lab Chip 11:1151–1156, 2011). The combination of these methods makes it possible to generate single and multiple monodisperse emulsions with the use of flow-focusing junctions in systems made in PC—a material that is suitable for fabrication of multilayer, high-throughput microfluidic devices.  相似文献   

11.
Modification of the surfaces of polycarbonate (PC) with the use of a solution of tin (II) chloride renders them hydrophilic. The surface draping is stable against exposure to water and to alcohols. Exposure to alkanes reduces but does not diminish the effect. The method is compatible—in using the same solvent and temperature—with the hydrophobic modification of PC Jankowski et al. ( Lab Chip 11:748–752, 2011). The combination of these methods makes it possible to generate single and multiple monodisperse emulsions with the use of flow-focusing junctions in systems made in PC—material that is suitable for fabrication of multilayer, high throughput microfluidic devices.  相似文献   

12.
The formation of microscale single- and double-emulsion droplets with various sizes is crucial for a variety of industrial applications. In this paper, we report a new microfluidic device which can actively fine-tune the size of single- and double-emulsion droplets in liquids by utilizing controllable moving-wall structures. Moreover, various sizes of external and internal droplets for double emulsions are also successfully formed by using this device. Three pneumatic side chambers are placed at a T-junction and flow-focusing channels to construct the controllable moving-wall structures. When compressed air is applied to the pneumatic side chambers, the controllable moving-wall structures are activated, thus physically changing the width of the microchannels. The size of the internal droplets at the intersection of the T-junction channel is then fine-tuned due to the increase in the shear force. Then, the internal droplets are focused into a narrow stream hydrodynamically and finally chopped into double-emulsion droplets using another pair of moving-wall structures downstream. For single emulsions, oil-in-water droplets can be actively fine-tuned from 50.07 to 21.80 under applied air pressures from 10 to 25 psi with a variation of less than 3.53%. For a water-in-oil single emulsion, droplets range from 50.32 to 14.76 with a variation of less than 4.62% under the same applied air pressures. For double emulsions, the sizes of the external and internal droplets can be fine-tuned with external/internal droplet diameter ratios ranging from 1.69 to 2.75. The development of this microfluidic device is promising for a variety of applications in the pharmaceutical, cosmetics, and food industries.  相似文献   

13.
We studied experimentally the complete transient response of Taylor cones subject to a step change in external electric field with the goal of finding optimal conditions to reduce the overall response time and achieve the highest possible switching bandwidth. The transient behavior of electrified menisci is of interest for many applications that would benefit from active control of on/off switching of the electrospray, such as femtoliter droplet-on-demand or novel fuel injectors in next generation internal combustion engines. We first investigated the transient behavior of ethanol, a typical solvent for droplet-on-demand. We then expanded the study to fuels such as JP-8 and E-30 biogas, a biofuel with 30% ethanol (vol.). The system response is a multi-stage process that can last from ~100?μs to ~100?ms. Potential bottleneck stages include liquid accumulation, meniscus oscillation, and cone relaxation, depending on the experimental conditions. A typical full response time is ~1?ms, and the shortest transient process observed is ~400?μs. For a given liquid, nozzle outer diameter (OD) and applied voltage are the two most important parameters to influence the full response time. Onset or near-onset voltage for the establishment of the cone jet often leads to a large number of oscillation cycles and should be avoided. Changes in conductivity and viscosity by less than a factor of 10 have negligible effects on the transient process. Using JP-8 or E-30 biogas, 90?μm OD nozzle with extractor, and flow rate of 0.4?mL/h, we can routinely achieve bandwidth of 1?kHz, corresponding to a full response time of 1?ms, after which quasi-monodispersed droplets of ~10?μm are generated. Adaptation of an inviscid model of a charged oscillating droplet to the oscillating meniscus satisfactorily explains several key phenomena observed in our experiments, such as the full response time and the overshoot of the meniscus height.  相似文献   

14.
In this study, a poly-methyl-methacrylate (PMMA) microfluidic chip with a 45° cross-junction microchannel is fabricated using a CO2 laser machine to generate chitosan microfibers. Chitosan solution and sodium tripolyphosphate (STPP) solution were injected into the cross-junction microchannel of the microfluidic chip. The laminar flow of the chitosan solution was generated by hydrodynamic focusing. The diameter of laminar flow, which ranged from 30 to 50 μm, was controlled by changing the ratio between chitosan solution and STPP solution flow rates in the PMMA microfluidic chip. The laminar flow of the chitosan solution was converted into chitosan microfibers with STPP solution via the cross-linking reaction; the diameter of chitosan microfibers was in the range of 50–200 μm. The chitosan microfibers were then coated with collagen for cell cultivation. The results show that the chitosan microfibers provide good growth conditions for cells. They could be used as a scaffold for cell cultures in tissue engineering applications. This novel method has advantages of ease of fabrication, simple and low-cost process.  相似文献   

15.
The focusing of biological and synthetic particles in microfluidic devices is a crucial step for the construction of many microstructured materials as well as for medical applications. The present study examines the feasibility of using contactless dielectrophoresis (cDEP) in an insulator-based dielectrophoretic (iDEP) microdevice to effectively focus particles. Particles 10?μm in diameter were introduced into the microchannel and pre-confined hydrodynamically by funnel-shaped insulating structures near the inlet. The particles were repelled toward the center of the microchannel by the negative DEP forces generated by the insulating structures. The microchip was fabricated based on the concept of cDEP. The electric field in the main microchannel was generated using electrodes inserted into two conductive micro-reservoirs, which were separated from the main microchannel by 20-μm-thick insulating barriers made of polydimethylsiloxane (PDMS). The impedance spectrum of the thin insulating PDMS barrier was measured to investigate its capacitive behavior. Experiments employing polystyrene particles were conducted to demonstrate the feasibility of the proposed microdevice. Results show that the particle focusing performance increased with increasing frequency of the applied AC voltage due to the reduced impedance of PDMS barriers at high frequencies. When the frequency was above 800?kHz, most particles were focused into a single file. The smallest width of focused particles distributed at the outlet was about 13.1?μm at a frequency of 1?MHz. Experimental results also show that the particle focusing performance improved with increasing applied electric field strength and decreasing inlet flow rate. The usage of the cDEP technique makes the proposed microchip mechanically robust and chemically inert.  相似文献   

16.
This study developed a droplet biochip driven with a single vacuum module to produce droplets from small sample volumes. The vacuum module is composed of a shape memory polymer, which releases prestored energy for shape recovery when subjected to heat trigger, and works as an easy-to-attach vacuum source. The three-layer Teflon mold is designed to manufacture a vacuum module with a favorable yield (>95%). The water-in-oil emulsion droplets can be produced by attaching a single vacuum module with a microfluidic chip. The diameter of the vacuum module has been successfully reduced to 6 mm. The maximum driving pressure provided by the 15-mm diameter vacuum module attached with a 2 μL chip is approximately 9653 Pa. The produced flow rate varies with the deformation rate of the vacuum module and becomes stable at 2.4 µL/min during the droplet generation. The droplet diameters range from 180 to 240 µm. The developed disposable vacuum module is easy to attach, easy to use, easy to make, cost-effective, and automatically controllable for driving fluids on a chip for handling small sample volumes.  相似文献   

17.
We proposed a new flow-focusing technique for generation of monodisperse femtoliter droplets, based on the capillary micro-cross. A funnel-shaped interface of two phase system is observed in a capillary cross for mass production of uniform drops, where a tapered exit orifice is extruded into the dispersed feeding capillary. The droplets, down to 2 μm in size at frequency of 20 kHz, are controllable in size when choosing orifice and capillary sizes, as well as flow rates of inner and outer fluids. For a specific diameter of exit orifice, there is a maximal flow rate of outer fluid, beyond which the interface will be penetrated. Until then, the interface is in steady state and all droplets are highly uniform (<3%), implicating an absolute instability in the whole process.  相似文献   

18.
We demonstrate controlled guiding of nanoliter emulsion droplets of polar liquids suspended in oil along shallow hydrophilic tracks fabricated at the base of microchannels located within microfluidic chips. The tracks for droplet guiding are generated by exposing the glass surface of polydimethylsiloxane (PDMS)-coated microscope slides via femtosecond laser ablation. The difference in wettability of glass and PDMS surfaces together with the shallow step-like transverse topographical profile of the ablated tracks allows polar droplets wetting preferentially the glass surface to follow the track. In this study, we investigate guiding of droplets of two different polar liquids (water/ethylene glycol) with and without surfactant suspended in an oil medium along surface tracks of different depths of 1, 1.5, and 2 \(\upmu\)m. The results of experiments are also verified with computational fluid dynamics simulations. Guiding of droplets along the tracks as a function of the droplet composition and size and the surface profile depth is evaluated by analyzing the trajectories of moving droplets with respect to the track central axis, and conditions for stable guiding are identified. The experiments and numerical simulations indicate that while the track topography plays a role in droplet guiding using 1.5- and 2-\(\upmu\)m deep tracks, for the case of the smallest track depth of 1 \(\upmu\)m, droplet guiding is mainly caused by surface energy modification along the track rather than the presence of a topographical step on the surface. Our results can be exploited to sort passively different microdroplets mixed in the same microfluidic chip, based on their inherent wetting properties, and they can also pave the way for guiding of droplets along reconfigurable tracks defined by surface energy modifications obtained using other external control mechanisms such as electric field or light.  相似文献   

19.
A microfluidic platform for cell motility analysis in a three-dimensional environment is presented. The microfluidic device is designed to study migration of both single cells and cell spheroids, in particular under spatially and temporally controlled chemical stimuli. A layout based on a central microchannel confined by micropillars and two lateral reservoirs was selected as the most effective. The microfluidics have an internal height of 350 μm to accommodate cell spheroids of a considerable size. The chip is fabricated using well-established micromachining techniques, by obtaining the polydimethylsiloxane replica from a Si/SU-8 master. The chip is then bonded on a 170-μm-thick microscope glass slide to allow high spatial resolution live microscopy. In order to allow the cost-effective and highly repeatable production of chips with high aspect ratio (5:1) micropillars, specific design and fabrication processes were optimized. This design permits spatial confinement of the gel where cells are grown, the creation of a stable gel–liquid interface and the formation of a diffusive gradient of a chemoattractant (>48 h). The chip accomplishes both the tasks of a microfluidic bioreactor system and a cell analysis platform avoiding critical handling of the sample. The experimental fluidic tests confirm the easy handling of the chip and in particular the effectiveness of the micropillars to separate the Matrigel? from the culture media. Experimental tests of (i) the stability of the gradient, (ii) the biocompatibility and (iii) the suitability for microscopy are presented.  相似文献   

20.
We present a numerical and experimental study on a non-planar three-dimensional design of a microfluidic flow-focusing device for the well-controlled generation of monodisperse micron-sized droplets. Three relevant geometric parameters were identified: the distance between the inner inlet channel and the outlet channel, the width of the outlet channel, and its length. Simulation data extracted from a full parameter study and finite element simulations yielded four optimum designs that were then fabricated using soft lithography techniques. Under the predicted operating conditions, micro-droplets of a size of \({\sim}1\,\upmu \text {m}\) in diameter are obtained from a channel \(50\,\upmu \text {m}\) in width. This work represents an important breakthrough in the practical use of flow-focusing devices delivering a ratio of constriction to droplet size of 50 times, with the advantage of reduced clogging of the micro-channel, greatly improving the control and reliability of the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号