首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
真空断路器投切电容器组试验验证   总被引:3,自引:1,他引:3  
为寻找真空断路器投切电容器组时发生爆炸的原因,在运行电网上进行了10kV真空断路器投切电容器组的试验,5组样机为不同批号和洁净度的真空灭弧室,将其安装于同一组真空断路器上投切同一组电容器组,通过分析试验结果,得到结论:爆炸原因是真空断路器投切电容器组时发生重击穿并产生较高的过电压;真空灭弧室内部洁净度是影响真空断路器投切电容器组重击穿率的重要因素;真空断路器在投运前进行50次以上的电气老练试验是必要的。  相似文献   

2.
<正>【问】真空断路器切投电容器组时,为什么会发生“延时重击穿”现象? 【答】真空断路器灭弧后的介质恢复速度高达20~25kV/μs,远高于10kV电容器组开断后的电压恢复速度,理应不会发生重燃。而事实并非如此。而且真空断路器的重燃机理又与油断器有着很大的不同。油断器的重燃一般都发生在灭弧后5~10ms间。而真空断路器的重燃大多发生在灭弧后几十~几百ms间,有的甚至长达数s。这种现象称为真空断路器的“延时重击穿”。 真空间隙电击穿的原因,有许多不同的说法。目前一般认为有两种:场致发射引起电击穿和微粒引起电击穿。10kV真空断路器的开距一般都大于10mm。弧后出现的重击现象又是动态真空绝缘破坏的典型情况,因而10kV真空断路器在切合电容器组时发生的“延时重击穿”现象,用微粒引起的电击穿来说明比较适合。  相似文献   

3.
1 前言 中压开关无油化是当今高压电器的发展方向。近年来我国开关制造行业在10kV电压等级,无油化的真空断路器取得了突破性进展,广东省电力系统正在积极推广使用真空断路器。与此同时,也出现了一些问题,例如,真空灭弧室漏气、开断电容器组电流重燃、进线柜真空断路器额定电流参数偏低等。本文从制造的角  相似文献   

4.
通过对电容器合闸涌流的计算、电容器熔丝重击穿和真空断路器发生重击穿的分析研究,解释一起由于误合故障电容器而引起10 kV电容器组熔断器“群爆”、真空断路器损坏的事故发生原因,进而提出选用优质真空断路器、自动投切电容器主站应具有闭锁回路、电容器的外熔丝选用性能较好的熔断器等,以避免此类事故重复发生.  相似文献   

5.
中压固态复合开关切除电容器组的建模与分析   总被引:1,自引:0,他引:1  
以真空断路器与晶闸管阀并联构成的中压固态复合开关切除电容器组的研究内容,主要是对电容器组负载电流由真空断路器至晶闸管阀之间电流转移这一暂态过程进行解析分析。首先基于真空断路器分段线性化电弧伏安特性曲线,并结合等效电路构建电流转移数学模型;然后据此推导出中压固态复合开关切除电容器组电流和晶闸管阀端电压解析解;最后据此可以得出晶闸管阀组最佳触发时刻、晶闸管阀组设计参数以及电流转移暂态过程中电流冲击程度。因为实现了由真空断路器至晶闸管阀的电流转移,所以电容器组在晶闸管阀电流自然过零时刻被切除,彻底克服固定电容器(fix capacitor,FC)开关分闸时造成的开关重燃和操作过电压。中压固态复合开关切除电容器负载暂态性能与晶闸管开关电容器(thyristor switch capacitor,TSC)性能基本一致,但却实现了紧凑化、低成本和高可靠性设计。利用仿真和现场录波波形验证了技术可行性。  相似文献   

6.
高压真空断路器在投切电容器组时,由于断路器重燃引起的重燃过电压造成电容器极间绝缘损伤甚至击穿。本文针对某220kV变电站35kV并联电容器装置故障的现象及电容器损坏情况,结合故障录波图、真空断路器投切及保护定值的整定等,分析确定本次事故的原因是由于高压真空断路器在投切电容器装置过程中产生了重击穿过电压,导致电容器极间绝...  相似文献   

7.
高压真空断路器灭弧性能的退化易导致断路器触头动作过程中持续性电弧的产生,将会破坏触头表面粗糙度,导致滞后分合闸时间,严重时会引发击穿爆炸事故。因此,亟待开展高压真空断路器灭弧性能监测研究。现有对高压真空断路器灭弧性能的研究主要采用对灭弧室真空度的测量,但是存在测量周期较长、无法保证气密性等问题。通过分析灭弧室内熄弧原理,发现根据介质恢复时电弧电阻对电弧电流衰减特性的影响可以反演灭弧室内的熄弧水平。据此提取电弧电流趋势项作为灭弧能力的表征量,提出了一种仅基于电气量的高压真空断路器灭弧能力在线检测方法。该方法具有能够快速实时监测及测量手段安全的优势,现场实测数据及数字仿真验证了其有效性。  相似文献   

8.
真空断路器电容器回路故障原因分析   总被引:2,自引:1,他引:1  
通过对电容器组回路投(切)时的暂态过程分析得出断口存在2倍恢复电压,合闸冲击电流超过20倍以上的运行条件。利用平均轨迹图解分析法对10 kV真空断路器的触头运动过程进行了分析,得出存在"慢分状态"和"慢合状态"缺点,因此存在分闸重燃和合闸损坏的可能性。重燃的后果是使断口后端电容器等设备损坏而自身无损。分析认为断路器电容器两类事故归因于断路器与投切电容器组不相适应的结构设计,因此呼吁制造、运行单位协同解决,使真空技术为电力系统所使用。  相似文献   

9.
高压电容器和配用的断路器故障分析及应对措施   总被引:1,自引:0,他引:1  
邱生  张焰  蒋伟毅 《电世界》2010,(11):39-41
1故障情况 2008年7月19日,某供电公司110kV某变电站10kV电容器组109断路器发生爆炸,造成电容器组内3台电容器损坏,中性点电流互感器炸裂,断路器A、C两相电流互感器击穿,B相穿墙套管炸裂,母线侧及出线侧隔离开关损坏,若干支持瓷瓶损坏。  相似文献   

10.
为了减小断路器分合闸操作中电机操动机构驱动电机启动的响应时间,提高断路器的分合闸速度并改善断路器的触头震荡现象,提出了应用于电机操动机构的控制系统内储能电容的升压变换器技术。针对126kV真空断路器分合闸的技术要求,采用开关电容器组作为升压装置,利用电容器切换技术改变断路器进行分合闸操作的能量存储和释放方式,对断路器动触头的运动过程进行分段控制。在开关电容器组和普通储能电容器的条件下,进行了126kV真空断路器电动机操动机构的分合闸试验。实验结果验证,与采用普通储能电容的分合闸特性实验相比较,采用基于开关电容器组的电机控制系统可以有效地提高断路器的分闸和合闸速度,并改善断路器的触点弹跳。  相似文献   

11.
针对一起500 kV变电站隔离开关操作过程中发生的触头关合不到位引起的断路器均压电容爆炸事故,运用电磁暂态软件ATP/EMTP编程建立了电弧重燃模型,从过电压以及能量积累两方面对事故原因进行了分析。结论认为事故是由系统通过电弧向均压电容与线路对地电容构成的串联电容多次充电引起的,均压电容两端电压波形包含基频、高频两个分量,长时间工频电压和操作电压的叠加作用效应最终导致均压电容发生绝缘击穿。根据仿真计算对事故反措提出了建议。  相似文献   

12.
电气化铁路牵引供电系统2×27.5 kV双极真空断路器用于自耦变压器供电方式的接触网馈电线路的接通与开断。根据现行的铁路标准,该类型断路器灭弧室断口采用了27.5 kV额定电压等级的绝缘水平。笔者通过对接触网(T线)和正馈线(AF线)之间非接地短路故障的分析发现:当该断路器开断此类短路故障时,两支断口承受的短路电压一般是不平衡的,其中某一断口承受的电压将超过其绝缘耐受水平,严重劣化其开断短路电流条件,可能造成绝缘损坏甚至爆炸事故。因此建议:提高现行2×27.5 kV双极真空断路器绝缘水平的铁路标准;在现有断路器的2个断口上并联均压电容,平衡电压;增加该类型断路器双断口实际均压情况以及同步性开断试验项目。  相似文献   

13.
本文对220 kV C变电站2^#主变压器35 kV侧42^#断路器由AVC系统自动控制切电容器组时,42^#开关柜内发生三相短路,由于变压器线圈抗短路能力不足而引起2^#主变压器本体重瓦斯保护动作,导致变压器损坏的严重事故,结合故障录波记录和消弧线圈动作记录,通过对故障断路器进行详细的解体观察及试验,对事故过程采用EMTP进行过电压模拟仿真及分析等方法,从事故现象及理论上较为准确地判断出了故障原因,并提出了相应的防范措施.  相似文献   

14.
SF6高压断路器对某一具体故障的成功开断是其灭弧室结构、开断电流和操动机构三者共同作用的结果,这使得断路器压力特性与机械特性的耦合数值模拟在断路器结构设计和优化中占有非常重要的地位。基于气体质量守恒、能量守恒定律和牛顿第二定律,采用模块化拓扑关联分析方法,建立了SF6高压断路器压力特性与机械特性耦合数值分析计算方法。应用该方法对126kV/40kA SF6高压断路器空载、T100s开断压气缸内气体压力特性和操动机构的机械特性进行耦合数值计算,对比了开断电弧对压气缸内气体压力特性、质量和焓的流动特性及操动机构行程曲线的影响。  相似文献   

15.
某500 kV变电站利用SF 6断路器投切35 kV并联电容器组时,连续发生2起串联电抗器设备故障,分析原因是在投切操作过程产生了较大的涌流及过电压,引起干式空心电抗器发生匝间短路故障,严重威胁系统的安全运行。为了避免此类故障的再次发生,提出采用适用于投切35 kV并联电容器组的智能相控断路器来抑制合闸涌流,降低分闸重燃概率。为验证智能相控断路器的有效性,首先分析了投切涌流及过电压产生的原因和相控开关技术的原理,然后将智能相控断路器应用于该500 kV变电站的35 kV无功补偿系统,并分别对智能断路器与普通断路器进行多次分合闸对比试验,试验结果表明:普通断路器随机投切电容器组产生的最大涌流为4.2(标幺值,下同),过电压为1.81;智能相控断路器投切电容器组产生的最大涌流为2.3,过电压为1.4。试验结果证实智能相控断路器的应用能够从源头抑制合闸涌流和过电压,提高无功投切效率和系统安全性。  相似文献   

16.
330kV及以上电压等级的EHV输电线路发生单相接地故障时,故障相断路器跳开后,故障点处的弧光不能自灭,数十安的自由电弧电流让断路器重合闸无法顺利完成,严重影响了供电的可靠性和安全性。EHV输电线路的输送距离较远,潜供电弧的两个重要参数:潜供电流和恢复电压,在故障相线路上都具有一定的分布特性,所以应用分布参数计算模型对自由电弧进行探讨。先从较为简便的线路单元的等值电路出发,推导出潜供电流和恢复电压的数学模型。然后,探讨并建立了带有并联电抗器和串联补偿站的超高压输电线路的潜供电流和恢复电压的数学模型。最后分析所建立的分布式数学模型的物理意义。  相似文献   

17.
查找某变电站新投入10 kV 916断路器后监控系统频发10 kV母线接地信号原因.该变电站KD-XH型消弧控制装置采取根据测量步长定值逐步改变消弧线圈电感值的方法测试电容电流.分析认为,由于装置测量步长设置不合理,使改变后的消弧线圈感抗值接近或等于10 kV系统容抗值,引起10 kV系统发生谐振,从而导致监控系统频发10 kV母线接地信号.减小装置测量步长定值后,监控系统未再发10 kV母线接地信号.  相似文献   

18.
为了定量描述雷电过电压引起断路器灭弧室爆炸的全过程,以提出相应的预防措施,利用EMTP电磁暂态程序,以国内某220 kV电力系统为例,对雷击杆塔后断路器断口处的雷电过电压进行了计算。同时,依据热力学原理和气体状态方程,对断口燃弧产生的能量及由此引起的灭弧室压力升高进行了计算。最后,研究了燃弧时间和雷电流幅值对电弧能量及灭弧室压力的影响,提出了预防灭弧室爆炸的措施及绝缘配合相关意见。研究表明,灭弧室爆炸是由于电弧能量使其内部气压过大造成的,减小燃弧时间可降低电弧能量。雷电流的大小不是灭弧室爆炸的决定因素,而是其断口击穿的触发条件。在变电站进出线处安装避雷器可有效降低雷电冲击电压的幅值。  相似文献   

19.
相比于无串补的超高压输电线路,串联补偿超高压输电线路的潜供电流中含有低频率振荡分量。由于这些频率的存在,使得潜供电流的过零次数减少,不利于潜供电弧的自熄。建立了一个750kV超高压输电线路串补模型,并在Matlab中进行仿真分析。仿真结果表明,当线路发生单相接地故障,在线路保护启动断路器跳闸时,同时合闸故障相的旁路断路器,以旁路对应的串补电容,将会有效降低潜供电流,有利于提高单相重合闸的成功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号